题目内容

一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于,则算过关。问:

(Ⅰ)某人在这项游戏中最多能过几关?

(Ⅱ)他连过前三关的概率是多少?

(注:骰子是一个在各面上分别有1,2,3,4,5,6点数的均匀正方体。抛掷骰子落地静止后,向上一面的点数为出现点数。)

解析:由于骰子是均匀的正方体,所以抛掷后各点数出现的可能性是相等的。

(Ⅰ)因骰子出现的点数最大为6,而,因此,当时,n次出现的点数之和大于已不可能。即这是一个不可能事件,过关的概率为0。所以最多只能连过4关。                                                               .......5分

(Ⅱ)设事件为“第n关过关失败”,则对立事件为“第n关过关成功”。

第n关游戏中,基本事件总数为个。

第1关:事件所含基本事件数为2(即出现点数为1和2这两种情况),

过此关的概率为:

第2关:事件所含基本事件数为方程当a分别取2,3,4时的正整数解组数之和。即有(个)。

过此关的概率为:。                        ........10分

第3关:事件所含基本事件为方程当a分别取3,4,5,6,7,8时的正整数解组数之和。即有(个)。

过此关的概率为:。                   .........15分

故连过前三关的概率为:。      ........20分

(说明:第2,3关的基本事件数也可以列举出来)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网