题目内容
(本大题满分10分)在锐角△ABC中,.
(Ⅰ)求角的大小;
(Ⅱ)当时,求面积的最大值.
已知是双曲线的左焦点,P是C右支上一点, ,当 周长最小时,该三角形的面积为( )
A. B. C. D.
设集合,集合,则等于( )
(A)(1,2) (B) (1,2] (C) [1,2) (D) [1,2]
(本小题满分16分)已知A(﹣2, 0),B(2,0),C.
(1)若,求△ABC的外接圆的方程;
(2)若以线段AB为直径的圆O过点C(异于点A,B),直线x=2交直线AC于点R,线段BR的中点为D,试判断直线CD与圆O的位置关系,并证明你的结论.
若,且,则的最小值为 .
由经验得知,在某商场付款处排队等候付款的人数及其概率如下:
排队人数
0
1
2
3
4
5人以上
概 率
0.1
0.16
0.3
0.04
则排队人数为2或3人的概率为 .
函数的值域是 .
若的展开式中常数项为,则的值为
A. B. C.或 D.或
若函数是奇函数,则a= .