ÌâÄ¿ÄÚÈÝ
ÒÑÖª¸÷Ïî¾ùΪÕýÊýµÄÁ½¸öÎÞÇîÊýÁÐ{an}¡¢{bn}Âú×ãanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£®
£¨¢ñ£©µ±ÊýÁÐ{an}Êdz£ÊýÁУ¨¸÷Ïî¶¼ÏàµÈµÄÊýÁУ©£¬ÇÒb1=
ʱ£¬ÇóÊýÁÐ{bn}µÄͨÏʽ£»
£¨¢ò£©Éè{an}¡¢{bn}¶¼Êǹ«²î²»Îª0µÄµÈ²îÊýÁУ¬ÇóÖ¤£ºÊýÁÐ{an}ÓÐÎÞÇî¶à¸ö£¬¶øÊýÁÐ{bn}Ωһȷ¶¨£»
£¨¢ó£©Éèan+1=
(n¡ÊN*)£¬Sn=
bi£¬ÇóÖ¤£º2£¼
£¼6£®
£¨¢ñ£©µ±ÊýÁÐ{an}Êdz£ÊýÁУ¨¸÷Ïî¶¼ÏàµÈµÄÊýÁУ©£¬ÇÒb1=
| 1 |
| 2 |
£¨¢ò£©Éè{an}¡¢{bn}¶¼Êǹ«²î²»Îª0µÄµÈ²îÊýÁУ¬ÇóÖ¤£ºÊýÁÐ{an}ÓÐÎÞÇî¶à¸ö£¬¶øÊýÁÐ{bn}Ωһȷ¶¨£»
£¨¢ó£©Éèan+1=
| 2an2+an |
| an+1 |
| 2n |
| i=1 |
| Sn |
| n2 |
·ÖÎö£º£¨I£©Éèan=a£¾0£¬ÀûÓÃÊýÁÐ{an}¡¢{bn}Âú×ãanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£¬¿ÉµÃbn+1+bn=2n£¬£¨n¡ÊN*£©£¬ÓÚÊǵ±n¡Ý2ʱ£¬bn+bn-1=2£¨n-1£©£®ÓÚÊÇbn+1-bn-1=2£®¿ÉÖª£ºÊýÁÐ{bn}µ±nÎªÆæÊý»òżÊýʱ°´Ô˳Ðò¾ù¹¹³ÉÒÔ2Ϊ¹«²îµÄµÈ²îÊýÁУ¬ÀûÓõȲîÊýÁеÄͨÏʽ¼´¿ÉµÃ³ö£»
£¨II£©Éè{an}¡¢{bn}¹«²î·Ö±ðΪd1¡¢d2£¬¿ÉµÃÆäͨÏʽ£¬´úÈëanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£®¿ÉµÃ[a1+£¨n-1£©d1][b1+nd2]+£¨a1+nd1£©[b1+£¨n-1£©d2]=2n£¨a1+nd1£©£¬¶ÔÓÚÈÎÒânºã³ÉÁ¢£¬¿ÉµÃ
£¬½â³ö¼´¿É£»
£¨III£©ÀûÓÃan+1=
£¬¿ÉµÃan+1-an=
-an=
£¾0£¬ÓÚÊÇan£¼an+1£®ÀûÓÃanbn+1+an+1bn=2nan+1£¼an+1bn+1+an+1bn£¬¿ÉµÃ2n£¼bn+1+bn£®ÓÖanbn+1=£¨2n-bn£©•an+1£¾0£¬an+1£¾0£¬¿ÉµÃ2n-bn£¾0£®¿ÉµÃSn¡Ê(2n2£¬4n2+2n)£¬½ø¶øµÃ³ö£®
£¨II£©Éè{an}¡¢{bn}¹«²î·Ö±ðΪd1¡¢d2£¬¿ÉµÃÆäͨÏʽ£¬´úÈëanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£®¿ÉµÃ[a1+£¨n-1£©d1][b1+nd2]+£¨a1+nd1£©[b1+£¨n-1£©d2]=2n£¨a1+nd1£©£¬¶ÔÓÚÈÎÒânºã³ÉÁ¢£¬¿ÉµÃ
|
£¨III£©ÀûÓÃan+1=
2
| ||
| an+1 |
2
| ||
| an+1 |
| ||
| an+1 |
½â´ð£º£¨I£©½â£ºÉèan=a£¾0£¬¡ßÊýÁÐ{an}¡¢{bn}Âú×ãanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£¬
¡àbn+1+bn=2n£¬£¨n¡ÊN*£©£¬ÓÚÊǵ±n¡Ý2ʱ£¬bn+bn-1=2£¨n-1£©£®
¡àbn+1-bn-1=2£®
¡à¿ÉÖª£ºÊýÁÐ{bn}µ±nÎªÆæÊý»òżÊýʱ°´Ô˳Ðò¾ù¹¹³ÉÒÔ2Ϊ¹«²îµÄµÈ²îÊýÁУ¬
ÓÖb1=
£¬b1+b2=2£¬¿ÉµÃb2=
£®
¡àb2n-1=
+(n-1)•2=(2n-1)-
£¬b2n=
+(n-1)•2=2n-
£¬
¼´bn=n-
£¨n¡ÊN*£©£®
£¨2£©Ö¤Ã÷£ºÉè{an}¡¢{bn}¹«²î·Ö±ðΪd1¡¢d2£¬
Ôòan=a1+£¨n-1£©d£¬bn=b1+£¨n-1£©d2£¬
´úÈëanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£®
¿ÉµÃ[a1+£¨n-1£©d1][b1+nd2]+£¨a1+nd1£©[b1+£¨n-1£©d2]=2n£¨a1+nd1£©£¬¶ÔÓÚÈÎÒânºã³ÉÁ¢£¬
¿ÉµÃ
£¬½âµÃ
£¬
¿ÉµÃan=na1£¬bn=n£®
¡àÖ»ÓÐÈ¡a1£¾0¿ÉµÃÊýÁÐ{an}ÓÐÎÞÇî¶à¸ö£¬¶øÊýÁÐ{bn}Ωһȷ¶¨£»
£¨3£©Ö¤Ã÷£º¡ßan+1=
£¬
¡àan+1-an=
-an=
£¾0£¬
¡àan£¼an+1£®
¡àanbn+1+an+1bn=2nan+1£¼an+1bn+1+an+1bn£¬¿ÉµÃ2n£¼bn+1+bn£®
Òò´ËSn=
bi=£¨b1+b2£©+£¨b3+b4£©+¡+£¨b2n-1+b2n£©£¾2[1+3+¡+£¨2n-1£©]=2n2£®
ÓÖanbn+1=£¨2n-bn£©•an+1£¾0£¬an+1£¾0£¬
¡à2n-bn£¾0£®
¡àSn=
bi£¼2(1+2+¡+2n)=2n£¨1+2n£©=4n2+2n£¬
¡àSn¡Ê(2n2£¬4n2+2n)£¬
¡à2£¼
£¼4+
¡Ü6£®
¡àbn+1+bn=2n£¬£¨n¡ÊN*£©£¬ÓÚÊǵ±n¡Ý2ʱ£¬bn+bn-1=2£¨n-1£©£®
¡àbn+1-bn-1=2£®
¡à¿ÉÖª£ºÊýÁÐ{bn}µ±nÎªÆæÊý»òżÊýʱ°´Ô˳Ðò¾ù¹¹³ÉÒÔ2Ϊ¹«²îµÄµÈ²îÊýÁУ¬
ÓÖb1=
| 1 |
| 2 |
| 3 |
| 2 |
¡àb2n-1=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
¼´bn=n-
| 1 |
| 2 |
£¨2£©Ö¤Ã÷£ºÉè{an}¡¢{bn}¹«²î·Ö±ðΪd1¡¢d2£¬
Ôòan=a1+£¨n-1£©d£¬bn=b1+£¨n-1£©d2£¬
´úÈëanbn+1+an+1bn=2nan+1£¨n¡ÊN*£©£®
¿ÉµÃ[a1+£¨n-1£©d1][b1+nd2]+£¨a1+nd1£©[b1+£¨n-1£©d2]=2n£¨a1+nd1£©£¬¶ÔÓÚÈÎÒânºã³ÉÁ¢£¬
¿ÉµÃ
|
|
¿ÉµÃan=na1£¬bn=n£®
¡àÖ»ÓÐÈ¡a1£¾0¿ÉµÃÊýÁÐ{an}ÓÐÎÞÇî¶à¸ö£¬¶øÊýÁÐ{bn}Ωһȷ¶¨£»
£¨3£©Ö¤Ã÷£º¡ßan+1=
2
| ||
| an+1 |
¡àan+1-an=
2
| ||
| an+1 |
| ||
| an+1 |
¡àan£¼an+1£®
¡àanbn+1+an+1bn=2nan+1£¼an+1bn+1+an+1bn£¬¿ÉµÃ2n£¼bn+1+bn£®
Òò´ËSn=
| 2n |
| i=1 |
ÓÖanbn+1=£¨2n-bn£©•an+1£¾0£¬an+1£¾0£¬
¡à2n-bn£¾0£®
¡àSn=
| 2n |
| i=1 |
¡àSn¡Ê(2n2£¬4n2+2n)£¬
¡à2£¼
| Sn |
| n2 |
| 2 |
| n |
µãÆÀ£ºÊìÁ·ÕÆÎյȲîÊýÁеÄͨÏʽ¼°ÆäǰnÏîºÍ¹«Ê½¡¢ÊýÁеĵ¥µ÷ÐÔ¡¢·ÅËõ·¨µÈÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿