题目内容
数列{an}的前n项和为Sn,且a1=1,Sn+1=2Sn+n+1,n∈N.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
,设数列{bn}的前n项和为Tn,n∈N*,试判断Tn与2的关系,并说明理由.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=
| n | an+1-an |
分析:(Ⅰ)由a1=1,Sn+1=2Sn+n+1,知Sn+1+(n+1)+2=2(Sn+n+2),所以Sn=2n+1-n-2.由此能求出an.
(Ⅱ)由an=2n-1,知bn =
=
=
,所以Tn=1×
+2×
+…+n×
,由错位相减法得到Tn=2-(2+n)(
)n,由此能够证明Tn<2.
(Ⅱ)由an=2n-1,知bn =
| n |
| an+1-an |
| n |
| 2 n+1-2n |
| n |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 2 |
| 1 |
| 2 n |
| 1 |
| 2 |
解答:解:(Ⅰ)∵a1=1,Sn+1=2Sn+n+1,
∴Sn+1+(n+1)+2=2(Sn+n+2),
并且S1+1+2=1+1+2=4,数列{Sn+n+2}组成一个以4为首项,2为公比的等比数列,
∴Sn+n+1=4×2n-1=2n+1,
Sn=2n+1-n-2.
∴a1=S1=22-1-2=1,
an=Sn-Sn-1
=(2n+1-n-2)-(2n-n-1)=2n-1,
当n=1时,2n-1=1=a1,
∴an=2n-1.
(Ⅱ)∵an=2n-1,
∴bn =
=
=
,
∴Tn=1×
+2×
+…+n×
,①
Tn=1×
+2×
+…+n×
,②
①-②,得
Tn=
+
+
+…+
-n×
=
-n×
=1-
-
,
∴Tn=2-(2+n)(
)n
∴Tn<2.
∴Sn+1+(n+1)+2=2(Sn+n+2),
并且S1+1+2=1+1+2=4,数列{Sn+n+2}组成一个以4为首项,2为公比的等比数列,
∴Sn+n+1=4×2n-1=2n+1,
Sn=2n+1-n-2.
∴a1=S1=22-1-2=1,
an=Sn-Sn-1
=(2n+1-n-2)-(2n-n-1)=2n-1,
当n=1时,2n-1=1=a1,
∴an=2n-1.
(Ⅱ)∵an=2n-1,
∴bn =
| n |
| an+1-an |
| n |
| 2 n+1-2n |
| n |
| 2n |
∴Tn=1×
| 1 |
| 2 |
| 1 |
| 2 2 |
| 1 |
| 2 n |
| 1 |
| 2 |
| 1 |
| 2 2 |
| 1 |
| 2 3 |
| 1 |
| 2 n+1 |
①-②,得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 2 |
| 1 |
| 2 3 |
| 1 |
| 2 n |
| 1 |
| 2 n+1 |
=
| ||||
1-
|
| 1 |
| 2 n+1 |
=1-
| 1 |
| 2 n |
| n |
| 2 n+1 |
∴Tn=2-(2+n)(
| 1 |
| 2 |
∴Tn<2.
点评:本题考查数列的通项公式的证明和数列前n项和的求法和不等式的证明.解题时要认真审题,注意构造法和错位相减法的灵活运用.本题计算繁琐,容易出错.要注意培养计算能力.
练习册系列答案
相关题目