题目内容
分析:方法一:(特值法)根据T2=a1+a2=3,把n=2代入选项,排除C、D,再代入n=4,可判断选项;
方法二:因为当n为奇数时,an=1+2+…+n=
,当n为偶数时,an=an-1+1,然后利用分组求和法求出数列{an}的前n项和Tn(n为偶数),可得结论.
方法二:因为当n为奇数时,an=1+2+…+n=
| n(n+1) |
| 2 |
解答:解:方法一:(特值法)因为T2=a1+a2=3,把n=2代入选项,排除C、D,再代入n=4,因为T4=16,B选项满足,故选B.
方法二:因为当n为奇数时,an=1+2+…+n=
,当n为偶数时,an=an-1+1,
故n是偶数时,Tn=a1+(a1+1)+a3+(a3+1)+…+an-1+(an-1+1)
=2a1+1+2a3+1+…+2an-1+1
=2(a1+a3+…+an-1)+
=1×2+3×4+…+(n-1)n+
=(12+1)+(32+3)+…+[(n-1)2+(n-1)]+
=[12+32+52+…+(n-1)2]+[1+3+…+(n-1)]+
令S=12+22+…+(n-1)2+n2,A=12+32+52+…+(n-1)2,B=22+42+62+…+n2,
A-B=12-22+32-42+52-62+…+(n-1)2-n2=-1-2-3-4-…-(n-1)-n=-
,
又A+B=
,得A=
=
则 Tn=
+
+
=
+
+
=
+
+
.
故选B.
方法二:因为当n为奇数时,an=1+2+…+n=
| n(n+1) |
| 2 |
故n是偶数时,Tn=a1+(a1+1)+a3+(a3+1)+…+an-1+(an-1+1)
=2a1+1+2a3+1+…+2an-1+1
=2(a1+a3+…+an-1)+
| n |
| 2 |
=1×2+3×4+…+(n-1)n+
| n |
| 2 |
=(12+1)+(32+3)+…+[(n-1)2+(n-1)]+
| n |
| 2 |
=[12+32+52+…+(n-1)2]+[1+3+…+(n-1)]+
| n |
| 2 |
令S=12+22+…+(n-1)2+n2,A=12+32+52+…+(n-1)2,B=22+42+62+…+n2,
A-B=12-22+32-42+52-62+…+(n-1)2-n2=-1-2-3-4-…-(n-1)-n=-
| n(n+1) |
| 2 |
又A+B=
| n(n+1)(2n+1) |
| 6 |
| ||||
| 2 |
| n(n+1)(n-1) |
| 6 |
则 Tn=
| n(n+1)(n-1) |
| 6 |
(1+n-1)•
| ||
| 2 |
| n |
| 2 |
| n(n2-1) |
| 6 |
| n2 |
| 4 |
| n |
| 2 |
| n3 |
| 6 |
| n2 |
| 4 |
| n |
| 3 |
故选B.
点评:本题主要考查了数列的求和,以及特殊值法的应用,同时考查了计算能力,属于中档题.
练习册系列答案
相关题目