题目内容

在△ABC中,角A、B、C的对边分别为a,b,c.角A,B,C成等差数列.
(Ⅰ)求cosB的值;
(Ⅱ)边a,b,c成等比数列,求sinAsinC的值.
【答案】分析:(Ⅰ)在△ABC中,由角A,B,C成等差数列可知B=60°,从而可得cosB的值;
(Ⅱ)(解法一),由b2=ac,cosB=,结合正弦定理可求得sinAsinC的值;
(解法二),由b2=ac,cosB=,根据余弦定理cosB=可求得a=c,从而可得△ABC为等边三角形,从而可求得sinAsinC的值.
解答:解:(Ⅰ)由2B=A+C,A+B+C=180°,解得B=60°,
∴cosB=;…6分
(Ⅱ)(解法一)
由已知b2=ac,根据正弦定理得sin2B=sinAsinC,
又cosB=
∴sinAsinC=1-cos2B=…12分
(解法二)
由已知b2=ac及cosB=
根据余弦定理cosB=解得a=c,
∴B=A=C=60°,
∴sinAsinC=…12分
点评:本题考查数列与三角函数的综合,着重考查等比数列的性质,考查正弦定理与余弦定理的应用,考查分析转化与运算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网