题目内容
设x0是方程a|x|=loga|x|的一个实根,其中0<a<1,b>1,则有
A.x0∈(-1,1)
B.x0∈(0,b)
C.x0∈(-b,-1)∪(0,1)
D.x0∈(-b,-1)∪(1,b)
设f(x)是定义在R上的偶函数,对x∈R,都有f(x+4)=f(x),且当x∈[-2,0]时,f(x)=()x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是
A.(1,2) B. (2,+∞) C. (1,) D. (,2)
设f (x)是定义在R上的偶函数,对x∈R,都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=()x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是( )
A.(1, 2) B.(2,+∞) C.(1, ) D.( , 2)w
(本小题满分12分)已知命题p:函数f(x)=loga|x|在(0,+∞)上单调递增,命题q:关于x的方程x2+2x+loga=0的解集只有一个子集,p∨q为真,(¬p)∨(¬q)也为真,求实数a的取值范围.