题目内容

16.已知函数f(x)=sin(2x+φ)(0<φ<π)的图象过点($\frac{π}{12}$,1).
(1)求φ的值;
(2)在△A BC中,角A,B,C所对的边分别为a,b,c,若a2+b2-c2=ab,$f({\frac{A}{2}+\frac{π}{12}})=\frac{{\sqrt{2}}}{2}$,求sinB.

分析 (1)代入点的坐标,由特殊角的三角函数值,即可求得所求值;
(2)运用余弦定理,可得C,再由条件可得A,运用三角形的内角和定理即可得到B,进而得到sinB.

解答 解:(1)由$f({\frac{π}{12}})=1$得:$sin({\frac{π}{6}+φ})=1$,
∵0<φ<π,∴$\frac{π}{6}<\frac{π}{6}+φ<\frac{7π}{6}$,
故$\frac{π}{6}+φ=\frac{π}{2}$,
∴$φ=\frac{π}{3}$;
(2)∵a2+b2-c2=ab,
∴$cosC=\frac{{{a^2}+{b^2}-{c^2}}}{2ab}=\frac{1}{2}$,
∵0<C<π,∴$C=\frac{π}{3}$,
由(1)知:$f(x)=sin({2x+\frac{π}{3}})$,
∴$f({\frac{A}{2}+\frac{π}{12}})=sin({{A}+\frac{π}{2}})=cos{A}=\frac{{\sqrt{2}}}{2}$,
∵0<A<π∴${A}=\frac{π}{4}$,
∵${B}=π-({{A}+C})=\frac{5π}{12}$
∴$sin{B}=sin\frac{5π}{12}=\frac{{\sqrt{2}+\sqrt{6}}}{4}$.

点评 本题考查三角函数的求值,同时考查余弦定理的运用,以及诱导公式的运用,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网