题目内容
数列{an}的通项an=n2(cos2
-sin2
),其前n项和为Sn,
(1)求Sn;
(2)bn=
,求数列{bn}的前n项和Tn.
| nπ |
| 3 |
| nπ |
| 3 |
(1)求Sn;
(2)bn=
| S3n |
| n•4n |
(1)由于cos2
-sin2
=cos
,an=n2•cos
故S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k)
=(-
+32)+(-
+62)+…+[-
+(3k)2]
=
+
+…+
=
S3k-1=S3k-a3k=
,
S3k-2=S3k-1-a3k-1=
+
=
-k=-
-
,
故Sn=
(k∈N*)
(2)bn=
=
,
Tn=
[
+
++
],
4Tn=
[13+
++
],
两式相减得3Tn=
[13+
+…+
-
]=
[13+
-
]=8-
-
,
故Tn=
-
-
.
| nπ |
| 3 |
| nπ |
| 3 |
| 2nπ |
| 3 |
| 2nπ |
| 3 |
故S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k)
=(-
| 12+22 |
| 2 |
| 42+52 |
| 2 |
| (3k-2)2+(3k-1)2 |
| 2 |
=
| 13 |
| 2 |
| 31 |
| 2 |
| 18k-5 |
| 2 |
| k(4+9k) |
| 2 |
S3k-1=S3k-a3k=
| k(4-9k) |
| 2 |
S3k-2=S3k-1-a3k-1=
| k(4-9k) |
| 2 |
| (3k-1)2 |
| 2 |
| 1 |
| 2 |
| 3k-2 |
| 3 |
| 1 |
| 6 |
故Sn=
|
(2)bn=
| S3n |
| n•4n |
| 9n+4 |
| 2•4n |
Tn=
| 1 |
| 2 |
| 13 |
| 4 |
| 22 |
| 42 |
| 9n+4 |
| 4n |
4Tn=
| 1 |
| 2 |
| 22 |
| 4 |
| 9n+4 |
| 4n-1 |
两式相减得3Tn=
| 1 |
| 2 |
| 9 |
| 4 |
| 9 |
| 4n-1 |
| 9n+4 |
| 4n |
| 1 |
| 2 |
| ||||
1-
|
| 9n+4 |
| 4n |
| 1 |
| 22n-3 |
| 9n |
| 22n+1 |
故Tn=
| 8 |
| 3 |
| 1 |
| 3•22n-3 |
| 3n |
| 22n+1 |
练习册系列答案
相关题目
设Sn是等差数列{an}前n项和,若a4=9,S3=15,则数列{an}的通项为( )
| A、2n-3 | B、2n-1 | C、2n+1 | D、2n+3 |