题目内容

数列{an}的通项an=n2(cos2
3
-sin2
3
)
,其前n项和为Sn
(1)求Sn
(2)bn=
S3n
n•4n
,求数列{bn}的前n项和Tn
(1)由于cos2
3
-sin2
3
=cos
2nπ
3
an=n2•cos
2nπ
3

故S3k=(a1+a2+a3)+(a4+a5+a6)+…+(a3k-2+a3k-1+a3k
=(-
12+22
2
+32)+(-
42+52
2
+62)+…+[-
(3k-2)2+(3k-1)2
2
+(3k)2]

=
13
2
+
31
2
+…+
18k-5
2
=
k(4+9k)
2

S3k-1=S3k-a3k=
k(4-9k)
2

S3k-2=S3k-1-a3k-1=
k(4-9k)
2
+
(3k-1)2
2
=
1
2
-k=-
3k-2
3
-
1
6

Sn=
-
n
3
-
1
6
n=3k-2
(n+1)(1-3n)
6
n=3k-1
n(3n+4)
6
n=3k
(k∈N*
(2)bn=
S3n
n•4n
=
9n+4
2•4n

Tn=
1
2
[
13
4
+
22
42
++
9n+4
4n
]

4Tn=
1
2
[13+
22
4
++
9n+4
4n-1
]

两式相减得3Tn=
1
2
[13+
9
4
+…+
9
4n-1
-
9n+4
4n
]=
1
2
[13+
9
4
-
9
4n
1-
1
4
-
9n+4
4n
]=8-
1
22n-3
-
9n
22n+1

Tn=
8
3
-
1
3•22n-3
-
3n
22n+1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网