ÌâÄ¿ÄÚÈÝ
2010ÄêÉϺ£³É¹¦¾Ù°ìÁ˾ÙÊÀÖõÄ¿µÄµÚ41½ìÊÀ²©»á£®ÓÐÒ»¼Ò¹«Ë¾ÉèÖÃÁËÕâÑùÒ»¸ö½±Ï¶ÔÓÚº¯Êýf£¨n£©=logn+1£¨n+2£©£¬n¡ÊN*£¬Èç¹ûÕýÕûÊýkÂú×ã³Ë»ýf£¨1£©f£¨2£©f£¨3£©•¡•f£¨k£©ÎªÕûÊý£¬Ôò³ÆkΪ¡°ÊÀ²©ÐÒÔËÊý¡±£¬Ã¿ÌìÂòµ½µ±ÌìµÚkÕÅÊÀ²©ÃÅÆ±µÄÓοͿÉÒÔ»ñÔù¸Ã¹«Ë¾µÄÒ»·Ý¡°ÐÒÔËÀñÆ·¡±£®ÄÇôÿÌìµÚÒ»¸ö»ñµÃ¡°ÐÒÔËÀñÆ·¡±µÄÊÇÂòµ½µ±ÌìµÚ·ÖÎö£ºÏÈÀûÓû»µ×¹«Ê½Óëµþ³Ë·¨°Ña1•a2•a3¡ak»¯Îªlog2£¨k+2£©£»È»ºó¸ù¾Ýa1•a2•a3¡akΪÕûÊý£¬¿ÉµÃk=2n-2£»×îºóÓɵȱÈÊýÁÐͨÏʽ½â¾öÎÊÌ⣮
½â´ð£º½â£ºan=logn+1£¨n+2£©=
£¨n¡ÊN+£©£¬
¡àa1•a2•a3¡ak=
•
•
¡
=log2£¨k+2£©
ÓÖ¡ßa1•a2•a3¡akΪÕûÊý
¡àk+2±ØÐëÊÇ2µÄn´ÎÃÝ£¨n¡ÊN+£©£¬¼´k=2n-2£®
¡àk¡Ê[1£¬2011]ÄÚËùÓеÄÐÒÔËÊýΪ£º
M=£¨22-2£©£¬£¨23-2£©£¬£¨24-2£©£¬¡£¬£¨210-2£©
ÄÇôÿÌìµÚÒ»¸ö»ñµÃ¡°ÐÒÔËÀñÆ·¡±µÄÊÇÂòµ½µ±ÌìµÚ22-2=2ÕÅÊÀ²©ÃÅÆ±µÄÓοͣ»
ÔÚijÌ칺µÃǰ2010ÕÅÊÀ²©ÃÅÆ±µÄÓοÍÖÐÄܹ»»ñµÃ¡°ÐÒÔËÀñÆ·¡±µÄÖÁ¶àÓÐ9ÈË£®
¹Ê´ð°¸Îª2£»9£®
| log2(n+2) |
| log2(n+1) |
¡àa1•a2•a3¡ak=
| log23 |
| log22 |
| log24 |
| log23 |
| log25 |
| log24 |
| log2(k+2) |
| log2(k+1) |
ÓÖ¡ßa1•a2•a3¡akΪÕûÊý
¡àk+2±ØÐëÊÇ2µÄn´ÎÃÝ£¨n¡ÊN+£©£¬¼´k=2n-2£®
¡àk¡Ê[1£¬2011]ÄÚËùÓеÄÐÒÔËÊýΪ£º
M=£¨22-2£©£¬£¨23-2£©£¬£¨24-2£©£¬¡£¬£¨210-2£©
ÄÇôÿÌìµÚÒ»¸ö»ñµÃ¡°ÐÒÔËÀñÆ·¡±µÄÊÇÂòµ½µ±ÌìµÚ22-2=2ÕÅÊÀ²©ÃÅÆ±µÄÓοͣ»
ÔÚijÌ칺µÃǰ2010ÕÅÊÀ²©ÃÅÆ±µÄÓοÍÖÐÄܹ»»ñµÃ¡°ÐÒÔËÀñÆ·¡±µÄÖÁ¶àÓÐ9ÈË£®
¹Ê´ð°¸Îª2£»9£®
µãÆÀ£º±¾ÌâÔÚÀí½âж¨ÒåµÄ»ù´¡ÉÏ£¬¿¼²é»»µ×¹«Ê½¡¢µþ³Ë·¨¼°µÈ±ÈÊýÁÐǰnÏîºÍ¹«Ê½£¬Æä×ÛºÏÐÔ¡¢¼¼ÇÉÐÔÊDZȽÏÇ¿µÄ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿