题目内容
20.定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+3}$,又bn=$\frac{{a}_{n}+1}{2}$,则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{9}{b}_{10}}$=( )| A. | $\frac{1}{7}$ | B. | $\frac{10}{69}$ | C. | $\frac{1}{4}$ | D. | $\frac{10}{39}$ |
分析 首先根据信息建立等量关系,进一步求出数列的通项公式,最后利用裂项相消法求出结果.
解答 解:定义$\frac{n}{{p}_{1}+{p}_{2}+…+{p}_{n}}$为n个正数p1,p2,…,pn的“均倒数”.
所以:已知数列{an}的前n项的“均倒数”为$\frac{1}{2n+3}$,
即:$\frac{n}{{a}_{1}+{a}_{2}+…+{a}_{n}}$=$\frac{1}{2n+3}$,
所以Sn=n(2n+3)
则an=Sn-Sn-1=4n+1,
当n=1时,也成立.
则an=4n+1.
由于bn=$\frac{{a}_{n}+1}{2}$=2n+1,
所以$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(2n+1)(2n+3)}$=$\frac{1}{2}$($\frac{1}{2n+1}$-$\frac{1}{2n+3}$),
则$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{9}{b}_{10}}$=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{5}$)+($\frac{1}{5}$-$\frac{1}{7}$)+…+($\frac{1}{19}$-$\frac{1}{21}$)
=$\frac{1}{2}$($\frac{1}{3}$-$\frac{1}{21}$)=$\frac{1}{7}$.
故选:A.
点评 本题考查的知识要点:信息题型的应用,数列通项公式的求法,利用裂项相消法求数列的和.
练习册系列答案
相关题目
14.已知x-x-1=1,那么x3-x-3的值为 ( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
15.设实数x,y满足$\left\{\begin{array}{l}{y≤2x+2}\\{x+y-2≥0}\\{x≤2}\end{array}\right.$,则$\frac{x+3}{y+1}$的取值范围是( )
| A. | [$\frac{5}{7}$,5] | B. | [$\frac{5}{7}$,1] | C. | [$\frac{1}{5}$,$\frac{7}{5}$] | D. | (-∞,$\frac{1}{5}$]∪[$\frac{7}{5}$,+∞) |
5.函数f(x)=x2-4xsin$\frac{πx}{2}$+1(x∈R))零点的个数为( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
12.若实数x,y满足约束条件$\left\{\begin{array}{l}y≤4-x\\ 2x-y+1≥0\\ x-4y-4≤0\end{array}\right.$,则z=x-2y的最大值是4.
9.设集合A={-2,-1,0,1,2},B={x|y=log(x-3)•(1-x)},则A∩B等于( )
| A. | {2} | B. | {1,2} | C. | {0,-1,1} | D. | {-1,1} |