题目内容
已知数列{an}满足:a1=2t-3(t∈R且t≠±1),an+1=
(n∈N*).
(1)求数列{an}的通项公式;
(2)若t>0,试比较an+1与an的大小.
| (2tn+1-3)an+2(t-1)tn-1 | an+2tn-1 |
(1)求数列{an}的通项公式;
(2)若t>0,试比较an+1与an的大小.
分析:(1)由题意变形可得
=
=
记
=bn可得即数列{
}为首项公差均为
的等差数列,通过求其通项进而求{an}的通项;
(2)由(1)的结论利用作差法可比较an+1与an的大小.
| an+1+1 |
| tn+1-1 |
| 2(an+1) |
| an+2tn-1 |
| ||
|
| an+1 |
| tn-1 |
| 1 |
| bn |
| 1 |
| 2 |
(2)由(1)的结论利用作差法可比较an+1与an的大小.
解答:解:(1)由原式变形得an+1=
=
=
-1
=
-1=
-1,
即an+1=
-1,可得an+1+1=
所以
=
=
=
.
记
=bn,则bn+1=
①,当n=1时,b1=
=
=2.
又由①取倒数得
=
+
,
=
,即数列{
}为首项公差均为
的等差数列,
从而有
=
+(n-1)•
=
,即
=
,
所以数列{an}的通项公式为:an=
-1.
(2)由(1)可知an+1-an=
-
=
[n(1+t+…+tn-1+tn)-(n+1)(1+t+…+tn-1)]=
[ntn-(1+t+…+tn-1)]=
[(tn-1)+(tn-t)+…+(tn-tn-1)]=
[(tn-1+tn-2+…+1)+t(tn-2+tn-3+…+1)+…+tn-1],
显然在t>0(t≠1)时恒有an+1-an>0,
故an+1>an.
| 2tn+1an-3an+2tn+1-2tn-1 |
| an+2tn-1 |
=
| 2tn+1an+2tn+1-2an-2-an-2tn+1 |
| an+2tn-1 |
| 2tn+1an+2tn+1-2an-2 |
| an+2tn-1 |
=
| 2tn+1(an+1)-2(an+1) |
| an+2tn-1 |
| 2(tn+1-1)(an+1) |
| an+2tn-1 |
即an+1=
| 2(tn+1-1)(an+1) |
| an+2tn-1 |
| 2(tn+1-1)(an+1) |
| an+2tn-1 |
所以
| an+1+1 |
| tn+1-1 |
| 2(an+1) |
| an+2tn-1 |
| 2(an+1) |
| an+1+2(tn-1) |
| ||
|
记
| an+1 |
| tn-1 |
| 2bn |
| bn+2 |
| a1+1 |
| t-1 |
| 2t-2 |
| t-1 |
又由①取倒数得
| 1 |
| bn+1 |
| 1 |
| bn |
| 1 |
| 2 |
| 1 |
| b1 |
| 1 |
| 2 |
| 1 |
| bn |
| 1 |
| 2 |
从而有
| 1 |
| bn |
| 1 |
| b1 |
| 1 |
| 2 |
| n |
| 2 |
| an+1 |
| tn-1 |
| 2 |
| n |
所以数列{an}的通项公式为:an=
| 2(tn-1) |
| n |
(2)由(1)可知an+1-an=
| 2(tn+1-1) |
| n+1 |
| 2(tn-1) |
| n |
| 2(t-1) |
| n(n+1) |
| 2(t-1) |
| n(n+1) |
| 2(t-1) |
| n(n+1) |
| 2(t-1)2 |
| n(n+1) |
显然在t>0(t≠1)时恒有an+1-an>0,
故an+1>an.
点评:本题为由数列的递推公式求数列的通项公式,准确变形利用倒数法构造等差数列是解决问题的关键,属难题.
练习册系列答案
相关题目