题目内容
已知等差数列{an}为递增数列,满足a32=5a1+5a5-25,在等比数列{bn}中,b3=a2+2,b4=a3+5,b5=a4+13.
(Ⅰ)求数列{bn}的通项公式bn;
(Ⅱ)若数列{bn}的前n项和为Sn,求证:数列{Sn+
}是等比数列.
(Ⅰ)求数列{bn}的通项公式bn;
(Ⅱ)若数列{bn}的前n项和为Sn,求证:数列{Sn+
| 5 |
| 4 |
(Ⅰ)∵a32=5a1+5a5-25
∴a32=10a3-25
∴(a3-5)2=0
∴a3=5
设等差数列{an}的公差为d,等比数列{bn}的公比为q,则
∵b3=a2+2,b4=a3+5,b5=a4+13,
∴(a3+5)2=(a2+2)(a4+13)
∴100=(7-d)(18+d)
∴d2+11d-26=0
∴d=2或d=-13(数列递增,舍去)
∴b3=a2+2=5,b4=a3+5=10,
∴q=2
∴bn=b3qn-3=5•2n-3;
(Ⅱ)证明:Sn=
=
•2n-
∴Sn+
=
•2n
∴
=
=2
∴数列{Sn+
}是以
为首项,2 为公比的等比数列.
∴a32=10a3-25
∴(a3-5)2=0
∴a3=5
设等差数列{an}的公差为d,等比数列{bn}的公比为q,则
∵b3=a2+2,b4=a3+5,b5=a4+13,
∴(a3+5)2=(a2+2)(a4+13)
∴100=(7-d)(18+d)
∴d2+11d-26=0
∴d=2或d=-13(数列递增,舍去)
∴b3=a2+2=5,b4=a3+5=10,
∴q=2
∴bn=b3qn-3=5•2n-3;
(Ⅱ)证明:Sn=
| ||
| 1-2 |
| 5 |
| 4 |
| 5 |
| 4 |
∴Sn+
| 5 |
| 4 |
| 5 |
| 4 |
∴
Sn+1+
| ||
Sn+
|
| ||
|
∴数列{Sn+
| 5 |
| 4 |
| 5 |
| 2 |
练习册系列答案
相关题目