题目内容
在等差数列{an}中,a1=3,前n项和Sn满足条件
=
,n=1,2,3,…
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=
,数列{bn}的前n项和为Tn,求Tn.
| Sn+2 |
| Sn |
| n+4 |
| n |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记bn=
| 1 |
| Sn |
分析:(1)由已知,令n=1,可求d,代入等差数列的通项公式即可求解
(2)由(Ⅰ)可求等差数列{an}的前n项和,代入利用裂项相消法即可求解
(2)由(Ⅰ)可求等差数列{an}的前n项和,代入利用裂项相消法即可求解
解答:解:(1)设等差数列{an}的公差为d,
由
=
对一切正自然数n都成立可知,
当n=1时,得:
=
=5,又a1=3,所以d=2,
所以an=3+2(n-1)=2n+1.
(2)由(Ⅰ)知等差数列{an}的前n项和Sn=
=n(n+2)
∴bn=
=
=
(
-
)
∴Tn=b1+b2+…+bn
=
(1-
+
-
+
-
+…+
-
)
=
(1+
-
-
)
=
-
(
+
)
由
| Sn+2 |
| Sn |
| n+4 |
| n |
当n=1时,得:
| S3 |
| S1 |
| 3a1+3d |
| a1 |
所以an=3+2(n-1)=2n+1.
(2)由(Ⅰ)知等差数列{an}的前n项和Sn=
| n(3+2n+1) |
| 2 |
∴bn=
| 1 |
| Sn |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴Tn=b1+b2+…+bn
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
点评:本题主要考查了等差数列的求和公式、通项公式的应用,裂项相消法求解数列的和方法的应用是求解(2)的关键
练习册系列答案
相关题目