题目内容
(2012•蓝山县模拟)已知正项数列{an}的首项a1=
,函数f(x)=
,g(x)=
.
(1)若正项数列{an}满足an+1=f(an)(n∈N*),证明:{
}是等差数列,并求数列{an}的通项公式;
(2)若正项数列{an}满足an+1≤f(an)(n∈N*),数列{bn}满足bn=
,证明:b1+b2+…+bn<1;
(3)若正项数列{an}满足an+1=g(an),求证:|an+1-an|≤
•(
)n-1.
| 1 |
| 2 |
| x |
| 1+x |
| 2x+1 |
| x+2 |
(1)若正项数列{an}满足an+1=f(an)(n∈N*),证明:{
| 1 |
| an |
(2)若正项数列{an}满足an+1≤f(an)(n∈N*),数列{bn}满足bn=
| an |
| n+1 |
(3)若正项数列{an}满足an+1=g(an),求证:|an+1-an|≤
| 3 |
| 10 |
| 3 |
| 7 |
分析:(1)利用an+1=f(an)(n∈N*),推出an+1与an的关系,然后推出{
}是等差数列,并求数列{an}的通项公式;
(2)通过an+1≤f(an)(n∈N*),推出an≤
,利用bn=
,放大bn,然后通过求和b1+b2+…+bn证明结论.
(3)由题意推出a2-a1>0.证明an+1-an>0,数列是递增数列,推出|an+1-an|与|an-an-1|的关系,通过放缩法证明即可.
| 1 |
| an |
(2)通过an+1≤f(an)(n∈N*),推出an≤
| 1 |
| n+1 |
| an |
| n+1 |
(3)由题意推出a2-a1>0.证明an+1-an>0,数列是递增数列,推出|an+1-an|与|an-an-1|的关系,通过放缩法证明即可.
解答:证明:(1)∵an+1=f(an)=
,所以
=
=
+1,
即
-
=1
∴{
}是以2为首项,1为公差的等差数列,
=2+(n-1),即an=
.(3分)
(2)∵an+1≤f(an)=
,an>0,
∴
≥
,即
-
≥1,
当n≥2时
-
=(
-
)+(
-
)+…+(
-
)≥n-1
∴
≥n+1
∴an≤
.
当n=1时,上式也成立,
∴an≤
,(n∈N*)
∴bn=
≤
<
=
-
,
∴b1+b2+…+bn<(1-
)+(
-
) +…+(
-
)=1-
<1.(8分)
(3)∵a1=
,a2=g(a1)=
,a2-a1=
-
=
>0.
又∵an+1-an=
-
=
,
由迭代关系可知,an+1-an>0,∴an≥a1=
.
又∵(2+an)(2+an-1)=(2+
)(2+an-1)=5+4an-1≥7,
∴
≤
,
∴|an+1-an|=
|an-an-1|≤
|an-an-1|,
∴|an+1-an|≤
|an-an-1|≤(
)2|an-1-an-2|≤…≤(
)n-1|a2-a1|=
(
)n-1.(13分)
| an |
| 1+an |
| 1 |
| an+1 |
| an+1 |
| an |
| 1 |
| an |
即
| 1 |
| an+1 |
| 1 |
| an |
∴{
| 1 |
| an |
| 1 |
| an |
| 1 |
| n+1 |
(2)∵an+1≤f(an)=
| an |
| 1+an |
∴
| 1 |
| an+1 |
| an+1 |
| an |
| 1 |
| an+1 |
| 1 |
| an |
当n≥2时
| 1 |
| an |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a1 |
| 1 |
| a3 |
| 1 |
| a2 |
| 1 |
| an |
| 1 |
| an-1 |
∴
| 1 |
| an |
∴an≤
| 1 |
| n+1 |
当n=1时,上式也成立,
∴an≤
| 1 |
| n+1 |
∴bn=
| an |
| n+1 |
| 1 |
| (n+1)2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴b1+b2+…+bn<(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
(3)∵a1=
| 1 |
| 2 |
| 4 |
| 5 |
| 4 |
| 5 |
| 1 |
| 2 |
| 3 |
| 10 |
又∵an+1-an=
| 2an+1 |
| 2+an |
| 2an-1+1 |
| 2+an-1 |
| 3(an-an-1) |
| (an+2)(an-1+2) |
由迭代关系可知,an+1-an>0,∴an≥a1=
| 1 |
| 2 |
又∵(2+an)(2+an-1)=(2+
| 2an-1+1 |
| 2+an-1 |
∴
| 3 |
| (2+an)(2+an-1) |
| 3 |
| 7 |
∴|an+1-an|=
| 3 |
| (2+an)(2+an-1) |
| 3 |
| 7 |
∴|an+1-an|≤
| 3 |
| 7 |
| 3 |
| 7 |
| 3 |
| 7 |
| 3 |
| 10 |
| 3 |
| 7 |
点评:本题考查放缩法的应用,等差关系的确定,数列与不等式的综合应用,考查分析问题解决问题的能力,转化思想的应用.
练习册系列答案
相关题目