ÌâÄ¿ÄÚÈÝ
£¨2006•³¯ÑôÇøÈýÄ££©ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÏòÁ¿
=£¨c£¬0£©£¨cΪ³£Êý£¬ÇÒc£¾0£©£¬
=£¨x£¬x£©£¨x¡ÊR£©£¬
|
|µÄ×îСֵΪ 1 £¬
=(
£¬ t)£¨aΪ³£Êý£¬ÇÒa£¾c£¬t¡ÊR£©£®¶¯µãPͬʱÂú×ãÏÂÁÐÈý¸öÌõ¼þ£º£¨1£©|
|=
|
|£»£¨2£©
=¦Ë
£¨¦Ë¡ÊR£¬ÇҦˡÙ0£©£»£¨3£©¶¯µãPµÄ¹ì¼£C¾¹ýµãB£¨0£¬-1£©£®
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚ·½ÏòÏòÁ¿Îª
=£¨1£¬k£©£¨k¡Ù0£©µÄÖ±Ïßl£¬lÓëÇúÏßCÏཻÓÚM¡¢NÁ½µã£¬Ê¹|
|=|
|£¬ÇÒ
Óë
µÄ¼Ð½ÇΪ60¡ã£¿Èô´æÔÚ£¬Çó³ökÖµ£¬²¢Ð´³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| OF |
| OG |
|
| FG |
| OE |
| a2 |
| c |
| PF |
| c |
| a |
| PE |
| PE |
| OF |
£¨¢ñ£©ÇóÇúÏßCµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚ·½ÏòÏòÁ¿Îª
| m |
| BM |
| BN |
| BM |
| BN |
·ÖÎö£º£¨I£©ÀûÓÃÏòÁ¿µÄÄ£µÄ¼ÆË㹫ʽºÍ¶þ´Îº¯ÊýµÄµ¥µ÷ÐÔ¼´¿ÉµÃ³öc£¬ÓÉ
=(
£¬ t) (t¡ÊR)£¬¿ÉÖªµãEÔÚÖ±Ïß x=
ÉÏ£®
ÓÉ£¨1£©¡¢£¨2£©ºÍÍÖÔ²µÄµÚ¶þ¶¨Òå¿ÉÖª£¬µãPµÄ¹ì¼£CÊÇÍÖÔ²£®µÃ³ö¼´¿É£®
£¨II£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄÖ±Ïßl£¬²¢ÉèlµÄ·½³ÌΪ£ºy=kx+m£¬M£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬°ÑÖ±ÏßlµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ¡÷£¾0¼°¸ùÓëϵÊýµÄ¹ØÏµ£¬ÔÙÀûÓô¹Ö±Æ½·ÖÏßµÄÐÔÖʿɵÃÏß¶ÎMNµÄ´¹Ö±Æ½·ÖÏߵķ½³Ì£¬¸ù¾Ý¡÷BMNΪµÈ±ßÈý½ÇÐΣ®¿ÉµÃµãBµ½Ö±ÏßMNµÄ¾àÀëd=
|MN|£®ÔÙÀûÓõ㵽ֱÏߵľàÀ빫ʽºÍÏÒ³¤¹«Ê½¼´¿ÉµÃ³ö£®
| OE |
| a2 |
| c |
| a2 |
| c |
ÓÉ£¨1£©¡¢£¨2£©ºÍÍÖÔ²µÄµÚ¶þ¶¨Òå¿ÉÖª£¬µãPµÄ¹ì¼£CÊÇÍÖÔ²£®µÃ³ö¼´¿É£®
£¨II£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄÖ±Ïßl£¬²¢ÉèlµÄ·½³ÌΪ£ºy=kx+m£¬M£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬°ÑÖ±ÏßlµÄ·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢¿ÉµÃ¡÷£¾0¼°¸ùÓëϵÊýµÄ¹ØÏµ£¬ÔÙÀûÓô¹Ö±Æ½·ÖÏßµÄÐÔÖʿɵÃÏß¶ÎMNµÄ´¹Ö±Æ½·ÖÏߵķ½³Ì£¬¸ù¾Ý¡÷BMNΪµÈ±ßÈý½ÇÐΣ®¿ÉµÃµãBµ½Ö±ÏßMNµÄ¾àÀëd=
| ||
| 2 |
½â´ð£º½â£º£¨¢ñ£©¡ß|
|=
=
¡Ý
c£¬
¡à
c=1 £¬ ¼´c=
£®
ÓÉ
=(
£¬ t) (t¡ÊR)£¬¿ÉÖªµãEÔÚÖ±Ïß x=
ÉÏ£®
ÓÉ£¨1£©¡¢£¨2£©¿ÉÖªµãPµ½Ö±Ïßx=
¾àÀëÓëµ½µãFµÄ¾àÀëÖ®±ÈΪ
(a£¾c£¾0)£¬
ÔÙÓÉÍÖÔ²µÄµÚ¶þ¶¨Òå¿ÉÖª£¬µãPµÄ¹ì¼£CÊÇÍÖÔ²£®
ÉèÍÖÔ²CµÄ·½³ÌΪ£º
+
=1£¬ÆäÖÐb2=a2-c2£®
ÓÉ£¨3£©¿ÉÖªb=1£¬¡àa2=b2+c2=1+2=3£®¡àÍÖÔ²CµÄ·½³ÌΪ£º
+y2=1£®
£¨¢ò£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄÖ±Ïßl£¬²¢ÉèlµÄ·½³ÌΪ£ºy=kx+m£¬M£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬
£¬ ÏûÈ¥y£¬ µÃ(1+3k2)x2+6kmx+3m2-3=0£®
Ôòx1+x2=-
£¬ x1x2=
£®
¡÷=36k2m2-12£¨m2-1£©£¨1+3k2£©=12[3k2-m2+1]£¾0 ¢Ù
ÉèÏß¶ÎMNµÄÖеãG£¨x0£¬y0£©£¬x0=
=-
£¬ y0=kx0+m=-
+m=
£¬
Ïß¶ÎMNµÄ´¹Ö±Æ½·ÖÏߵķ½³ÌΪ£ºy-
=-
(x+
)£®
¡ß|
|=|
|£¬¡àÏß¶ÎMNµÄ´¹Ö±Æ½·ÖÏß¹ýB£¨0£¬-1£©µã£®
¡à-1-
=-
•
=-
£®
¡àm=
£®¢Ú
¢Ú´úÈë¢Ù£¬µÃ3k2-£¨
)2+1£¾0 £¬ ½âµÃ-1£¼k£¼1 £¬ ÇÒk¡Ù0£®¢Û
¡ß|
|=|
|£¬ ÇÒ
Óë
µÄ¼Ð½ÇΪ60¡ã£¬¡à¡÷BMNΪµÈ±ßÈý½ÇÐΣ®
¡àµãBµ½Ö±ÏßMNµÄ¾àÀëd=
|MN|£®
¡ßd=
=
=
£¬
ÓÖ¡ß|MN|=
|x1-x2|=
•
=
•
=
¨T
=3
£¬
¡à
=
£®
½âµÃk2=
£¬¼´k=¡À
£¬Âú×ã¢Ûʽ£®´úÈë¢Ú£¬µÃm=
=
=1£®
Ö±ÏßlµÄ·½³ÌΪ£ºy=¡À
x+1£®
| FG |
| (x-c)2+x2 |
2(x-
|
| ||
| 2 |
¡à
| ||
| 2 |
| 2 |
ÓÉ
| OE |
| a2 |
| c |
| a2 |
| c |
ÓÉ£¨1£©¡¢£¨2£©¿ÉÖªµãPµ½Ö±Ïßx=
| a2 |
| c |
| a |
| c |
ÔÙÓÉÍÖÔ²µÄµÚ¶þ¶¨Òå¿ÉÖª£¬µãPµÄ¹ì¼£CÊÇÍÖÔ²£®
ÉèÍÖÔ²CµÄ·½³ÌΪ£º
| x2 |
| a2 |
| y2 |
| b2 |
ÓÉ£¨3£©¿ÉÖªb=1£¬¡àa2=b2+c2=1+2=3£®¡àÍÖÔ²CµÄ·½³ÌΪ£º
| x2 |
| 3 |
£¨¢ò£©¼ÙÉè´æÔÚ·ûºÏÌõ¼þµÄÖ±Ïßl£¬²¢ÉèlµÄ·½³ÌΪ£ºy=kx+m£¬M£¨x1£¬y1£©¡¢N£¨x2£¬y2£©£¬
|
Ôòx1+x2=-
| 6km |
| 1+3k2 |
| 3m2-3 |
| 1+3k2 |
¡÷=36k2m2-12£¨m2-1£©£¨1+3k2£©=12[3k2-m2+1]£¾0 ¢Ù
ÉèÏß¶ÎMNµÄÖеãG£¨x0£¬y0£©£¬x0=
| x1+x2 |
| 2 |
| 3km |
| 1+3k2 |
| 3k2m |
| 1+3k2 |
| m |
| 1+3k2 |
Ïß¶ÎMNµÄ´¹Ö±Æ½·ÖÏߵķ½³ÌΪ£ºy-
| m |
| 1+3k2 |
| 1 |
| k |
| 3km |
| 1+3k2 |
¡ß|
| BM |
| BN |
¡à-1-
| m |
| 1+3k2 |
| 1 |
| k |
| 3km |
| 1+3k2 |
| 3m |
| 1+3k2 |
¡àm=
| 1+3k2 |
| 2 |
¢Ú´úÈë¢Ù£¬µÃ3k2-£¨
| 1+3k2 |
| 2 |
¡ß|
| BM |
| BN |
| BM |
| BN |
¡àµãBµ½Ö±ÏßMNµÄ¾àÀëd=
| ||
| 2 |
¡ßd=
| |1+m| | ||
|
|1+
| ||
|
| 3 |
| 2 |
| 1+k2 |
ÓÖ¡ß|MN|=
| 1+k2 |
| 1+k2 |
| (x1+x2)2-4x1x2 |
=
| 1+k2 |
(-
|
|
| 12(3k2-m2+1) |
¨T
| ||
| 1+3k2 |
12[3k2-(
|
| ||
|
| 1-k2 |
¡à
| 3 |
| 2 |
| 1+k2 |
3
| ||
| 2 |
| ||
|
| 1-k2 |
½âµÃk2=
| 1 |
| 3 |
| ||
| 3 |
| 1+3k2 |
| 2 |
| 1+1 |
| 2 |
Ö±ÏßlµÄ·½³ÌΪ£ºy=¡À
| ||
| 3 |
µãÆÀ£ºÊìÁ·ÕÆÎÕÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²ÏßÏཻÎÊÌâת»¯Îª°ÑÖ±Ïߵķ½³ÌÓëË«ÇúÏߵķ½³ÌÁªÁ¢¿ÉµÃ¸ùÓëϵÊýµÄ¹ØÏµ¼°¡÷£¾0¡¢Öеã×ø±ê¹«Ê½¡¢·ÖÀàÌÖÂÛ˼Ïë·½·¨µÈÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿