题目内容

自点A(3,5)作圆C:(x-2)2+(y-3)2=1的切线,求切线的方程(  )
分析:切线的斜率不存在时x=3验证即可,当切线的斜率存在时,设为k,写出切线方程,圆心到切线的距离等于半径,解出k求出切线方程.
解答:解:∵圆C:(x-2)2+(y-3)2=1.
当切线的斜率不存在时,对直线x=3,C(2,3)到直线的距离为1,满足条件;
当k存在时,设直线y-5=k(x-3),即y=kx+5-3k,
|-k+2|
k
2
+1
=1,得k=
3
4

∴得直线方程x=3或y=
3
4
x+
11
4

故切线的方程为x=3或3x-4y+11=0
故选C
点评:本题考查圆的切线方程,点到直线的距离公式,是基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网