搜索
题目内容
如图,已知ABCDEF是边长为1的正六边形,则
BA
•
CD
的值为( )
A.-
1
2
B.
3
2
C.-
3
2
D.
1
2
试题答案
相关练习册答案
分析:
确定两向量的夹角,再利用向量的数量积公式,可求得结论.
解答:
解:∵知ABCDEF是边长为1的正六边形,
∴
<
BA
,
CD
>=60°
∴
BA
•
CD
=1×1×cos60°
=
1
2
故选D.
点评:
本题考查向量的数量积运算,考查学生的计算能力,属于基础题.
练习册系列答案
名校练加考系列答案
小学教材全测系列答案
核心课堂天津人民出版社系列答案
小学数学口算题卡脱口而出系列答案
优秀生新口算题卡口算天天练系列答案
优秀生应用题卡口算天天练系列答案
黄冈新编口算题卡与应用题系列答案
浙江之星课时优化作业系列答案
学习宝典百分计划系列答案
完美大考卷系列答案
相关题目
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
(1)求直线AE与平面CDE所成角的大小(用反三角函数值表示);
(2)求多面体ABCDE的体积.
如图,已知多面体ABCDE中,AE⊥平面ABC,AE
∥
.
.
1
2
CD
,△ABC是正三角形.
(Ⅰ)求证:平面BDE⊥平面BCD;
(Ⅱ)求平面ABE与平面BCD所成的锐二面角的大小.
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CD的中点.
(Ⅰ)求证:AF⊥平面CDE;
(Ⅱ)求面ACD和面BCE所成锐二面角的大小.
如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F为CE的中点.
( I)求证:求证AF⊥CD;
(II)求多面体ABCDE的体积.
如图,已知多面体ABCDE中,AB⊥面ACD,DE⊥面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1.
(Ⅰ)求证:AB∥面CDE;
(Ⅱ)在线段AC上找一点F使得AC⊥面DEF,并加以证明;
(Ⅲ)在线段CD是否存在一点M,使得BC∥面AEM,若存在,求出CM的长度;否则,说明理由.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案