题目内容
已知数列| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| (n+1)(n+2) |
分析:设出数列的通项写出通项公式,根据通项公式的特点进行裂项,然后进行求和写出前n项和的表达式即可.
解答:解:设数列为{an}则由题意可得:
数列的通项公式为an =
=
-
.
所以Sn=a1+a2+…+an
=
-
+
-
+… +
-
=
-
=
.
故答案为
.
数列的通项公式为an =
| 1 |
| (n+1)(n+2) |
| 1 |
| n+1 |
| 1 |
| n+2 |
所以Sn=a1+a2+…+an
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| n+2 |
| 2 |
| 2(n+2) |
故答案为
| 2 |
| 2(n+2) |
点评:解决此类问题的关键是数列掌握数列求和的方法,即裂项相消、错位相减、倒序相加、分组求和等方法.
练习册系列答案
相关题目