题目内容
已知等差数列{an}的公差为d,且a2=3…a5=9,数列{bn}的前n项和为sn,且sn=1-
bn(n∈N+)
(1)求数列{an},{bn}的通项公式;
(2)记cn=
求证:数列{cn}的前n项和 Tn≥3.
| 1 |
| 2 |
(1)求数列{an},{bn}的通项公式;
(2)记cn=
| 2an |
| bn |
(1)d=
=2,a1=1
∴an=2n-1
在sn=1-
bn中,令n=1得b1=
当n≥2时,sn=1-
bn sn-1=1-
bn-1,
两式相减得bn=
bn-1-
bn,
∴
=
(n≥2)
bn=
(
)n-1=
(2)cn=
=(2n-1)×3n,
Tn=1×31+3×32+5×33++(2n-3)×3n-1+(2n-1)×3n,
3Tn=1×32+3×33+5×34++(2n-3)×3n+(2n-1)×3n+1,
-2Tn=3+2(32+33++3n)-(2n-1)×3n+1=3+2×
-(2n-1)×3n+1
∴Tn=3+3n+1×(n-1)
∵n∈N+∴Tn≥3
| a5- a2 |
| 3 |
∴an=2n-1
在sn=1-
| 1 |
| 2 |
| 2 |
| 3 |
当n≥2时,sn=1-
| 1 |
| 2 |
| 1 |
| 2 |
两式相减得bn=
| 1 |
| 2 |
| 1 |
| 2 |
∴
| bn |
| bn-1 |
| 1 |
| 3 |
bn=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
(2)cn=
| 2an |
| bn |
Tn=1×31+3×32+5×33++(2n-3)×3n-1+(2n-1)×3n,
3Tn=1×32+3×33+5×34++(2n-3)×3n+(2n-1)×3n+1,
-2Tn=3+2(32+33++3n)-(2n-1)×3n+1=3+2×
| 9(1-3n-1) |
| 1-3 |
∴Tn=3+3n+1×(n-1)
∵n∈N+∴Tn≥3
练习册系列答案
相关题目