题目内容

已知函数

(Ⅰ)讨论函数在定义域内的极值点的个数;

(Ⅱ)已知函数处取得极值,且对,恒成立,

求实数的取值范围.

 

【答案】

(Ⅰ)上递减,在上递增,即处有极小值.

∴当上没有极值点,当时,上有一个极值点.

(Ⅱ)

【解析】(1)求出函数的导函数,在定义域内研究其单调性就可得到极值点及其个数;(2)由函数处取得极值,得,求出.把恒成立,转化为分离参数求函数最值,即得的范围.

(Ⅰ),······················································································· 1分

时,上恒成立,函数单调递减,

上没有极值点;················································································ 3分

时,

上递减,在上递增,即处有极小值.················ 5分

∴当上没有极值点,当时,上有一个极值点.

(Ⅱ)∵函数处取得极值,∴

,·········································································· 8分

,可得上递减,在上递增,··················· 10分

,即.       12分

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网