题目内容
【题目】平面内与两定点
,
连线的斜率之积等于非零常数
的点的轨迹,加上
、
两点所成的曲线
可以是圆、椭圆或双曲线,给出以下四个结论:①当
时,曲线
是一个圆;②当
时,曲线
的离心率为
;③当
时,曲线
的渐近线方程为
;④当曲线
的焦点坐标分别为
和
时,
的范围是
.其中正确的结论序号为_______.
【答案】①③
【解析】
设出动点
的坐标,根据斜率之积为
可求得动点的轨迹方程.依次代入
的值可判断①②③;讨论当
分别取
和
时焦点坐标,求得都为
和
,因而可判断④.
设动点
当
时,
即
,化简可得
又因为
,
满足![]()
所以动点
的轨迹方程为![]()
当
时,曲线
的方程为
,为圆心在原点,半径为
的圆,所以①正确;
当
时,曲线
的方程为
,可化为
,为焦点在
轴上的椭圆,所以
,则离心率为
,所以②错误;
当
时,曲线
的方程为
,可化为
,为焦点在
轴上的双曲线,所以渐近线方程为
,所以③正确;
当
时,曲线
的方程可化为
,表示焦点在
轴上的椭圆,则
,则焦点坐标为
和
.
当
时,曲线
的方程可化为
,表示焦点在
轴上的双曲线,则
,则焦点坐标为
和
.由以上可知,当焦点坐标为
和
时,
的取值范围为
,所以④错误.
综上可知,正确的序号有①③
故答案为: ①③
【题目】交强险是车主须为机动车购买的险种.若普通
座以下私家车投保交强险第一年的费用(基本保费)是
元,在下一年续保时,实行费率浮动制,其保费与上一年度车辆发生道路交通事故情况相联系,具体浮动情况如下表:
类型 | 浮动因素 | 浮动比率 |
| 上一年度未发生有责任的道路交通事故 | 下浮 |
| 上两年度未发生有责任的道路交通事故 | 下浮 |
| 上三年度未发生有责任的道路交通事故 | 下浮 |
| 上一年度发生一次有责任不涉及死亡的道路交通事故 |
|
| 上一年度发生两次及以上有责任不涉及死亡的道路交通事故 | 上浮 |
| 上三年度发生有责任涉及死亡的道路交通事故 | 上浮 |
据统计,某地使用某一品牌
座以下的车大约有
辆,随机抽取了
辆车龄满三年的该品牌同型号私家车的下一年续保情况,统计得到如下表格:
类型 |
|
|
|
|
|
|
数量 |
|
|
|
|
|
|
以这
辆该品牌汽车的投保类型的频率视为概率,按照我国《机动车交通事故责任保险条例》汽车交强险价格为
元.
(1)求得知,并估计该地本年度使用这一品牌
座以下汽车交强险费大于
元的辆数;
(2)试估计该地使用该品牌汽车的一续保人本年度的保费不超过
元的概率.
【题目】交强险是车主须为机动车购买的险种.若普通
座以下私家车投保交强险第一年的费用(基本保费)是
元,在下一年续保时,实行费率浮动制,其保费与上一年度车辆发生道路交通事故情况相联系,具体浮动情况如下表:
类型 | 浮动因素 | 浮动比率 |
| 上一年度未发生有责任的道路交通事故 | 下浮 |
| 上两年度未发生有责任的道路交通事故 | 下浮 |
| 上三年度未发生有责任的道路交通事故 | 下浮 |
| 上一年度发生一次有责任不涉及死亡的道路交通事故 |
|
| 上一年度发生两次及以上有责任不涉及死亡的道路交通事故 | 上浮 |
| 上三年度发生有责任涉及死亡的道路交通事故 | 上浮 |
某一机构为了研究某一品牌
座以下投保情况,随机抽取了
辆车龄满三年的该品牌同型号私家车的下一年续保情况,统计得到如下表格:
类型 |
|
|
|
|
|
|
数量 |
|
|
|
|
|
|
以这
辆该品牌汽车的投保类型的频率视为概率.
(I)试估计该地使用该品牌汽车的一续保人本年度的保费不超过
元的概率;
(II)记
为某家庭的一辆该品牌车在第四年续保时的费用,求
的分布列和期望.