搜索
题目内容
函数
f
(
x
)=
x
+
在
x
=1到
x
=2的函数增量为__________.
试题答案
相关练习册答案
解析:
f
(2)-
f
(1)=(2+
)-(1+1)=
.
答案:
练习册系列答案
悦然好学生周周测系列答案
单元加期末复习与测试系列答案
期末冲刺满分卷系列答案
归类集训系列答案
浙江名校名师金卷系列答案
亮点给力大试卷系列答案
高效复习方案期中期末复习卷系列答案
四步导学高效学练方案大试卷系列答案
优佳好卷与教学完美结合系列答案
同步大试卷系列答案
相关题目
(2012•深圳一模)已知函数
f(x)=
1
3
x
3
+b
x
2
+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设
g(x)=x
f′(x)
, m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.
设g(x)=2x+
1
x
,x∈[
1
4
,4].
(1)求g(x)的单调区间;(简单说明理由,不必严格证明)
(2)证明g(x)的最小值为g(
2
2
);
(3)设已知函数f(x)(x∈[a,b]),定义:f
1
(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f
2
(x)=max{f(t)|a≤t≤x}(x∈[a,b].其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.例如:f(x)=sinx,x∈[-
π
2
,
π
2
],则f
1
(x)=-1,x∈[-
π
2
,
π
2
],f
2
(x)=sinx,x∈[-
π
2
,
π
2
],设φ(x)=
g(x)+g(2x)
2
+
|g(x)-g(2x)|
2
,不等式p≤φ
1
(x)-φ
2
(x)≤m恒成立,求p、m的取值范围.
设函数f(x)是定义在R上的偶函数,且f(x+2)=f(x)恒成立;当x∈[0,1]时,f(x)=x
3
-4x+3.有下列命题:
①
f(-
3
4
) <f(
15
2
)
;
②当x∈[-1,0]时f(x)=x
3
+4x+3;
③f(x)(x≥0)的图象与x轴的交点的横坐标由小到大构成一个无穷等差数列;
④关于x的方程f(x)=|x|在x∈[-3,4]上有7个不同的根.
其中真命题的个数为( )
A.1个
B.2个
C.3个
D.4个
观察下列表格,探究函数
f(x)=x+
4
x
,x∈(0,+∞)
的性质,
x
…
0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7
…
y
…
8.5
5
4.17
4.05
4.005
4
4.005
4.02
4.04
4.3
5
5.8
7.57
…
(1)请观察表中y值随x值变化的特点,完成以下的问题.
函数
f(x)=x+
4
x
(x>0)
在区间(0,2)上递减;
函数
f(x)=x+
4
x
(x>0)
在区间
(2,+∞)
(2,+∞)
上递增.
当x=
2
2
时,y
最小
=
4
4
.
(2)证明:函数
f(x)=x+
4
x
在区间(0,2)递减.
(3)函数
f(x)=x+
4
x
(x<0)
时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)
已知函数
f(x)=
1
3
x
3
+b
x
2
+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设
g(x)=x
f′(x)
, m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案