题目内容
已知数列{an}满足:a1=3,an+1an+2an+1=3an+2,n∈N+,记bn=
.
(Ⅰ) 求证:数列bn是等比数列;
(Ⅱ) 若an≤t•4n对任意n∈N+恒成立,求t的取值范围;
(Ⅲ)证明:a1+a2+a3+…+an>2n+
.
| an-2 |
| an+1 |
(Ⅰ) 求证:数列bn是等比数列;
(Ⅱ) 若an≤t•4n对任意n∈N+恒成立,求t的取值范围;
(Ⅲ)证明:a1+a2+a3+…+an>2n+
| 3 |
| 4 |
分析:(Ⅰ)由条件先得an+1=
,再分别表示∴an+1-2,an+1+1,两式相除,可得数列{bn}是首项为
,公比为
的等比数列.
(Ⅱ)由(Ⅰ)可知an=
,对an≤t•4n分离参数得t≥
,从而可解;
(Ⅲ)由于an=
=2+
>2+
,利用放缩法可证.
| 3an+2 |
| an+2 |
| 1 |
| 4 |
| 1 |
| 4 |
(Ⅱ)由(Ⅰ)可知an=
| 1+2×4n |
| 4n-1 |
2+
| ||
| 4n-1 |
(Ⅲ)由于an=
| 2•4n+1 |
| 4n-1 |
| 3 |
| 4n-1 |
| 3 |
| 4n |
解答:解:(Ⅰ)证明:∵an+1an+2an+1=3an+2,∴an+1=
,∴an+1-2=
,an+1+1=
两式相除得bn+1=
bn,b1=
∴数列{bn}是首项为
,公比为
的等比数列.(4分)
(Ⅱ)由(Ⅰ)可知bn=
=
,∴an=
由an≤t•4n得t≥
易得
是关于n的减函数,∴
≤
,∴t≥
(8分)
(Ⅲ)an=
=2+
>2+
.∴a1+a2++an>(2+
)+(2+
)++(2+
)=2n+(
+
++
)
=2n+
•
=2n+1-(
)n≥2n+
.∴a1+a2+a3++an>2n+
.(13分)
| 3an+2 |
| an+2 |
| an-2 |
| an+2 |
| 4(an+1) |
| an+2 |
两式相除得bn+1=
| 1 |
| 4 |
| 1 |
| 4 |
∴数列{bn}是首项为
| 1 |
| 4 |
| 1 |
| 4 |
(Ⅱ)由(Ⅰ)可知bn=
| 1 |
| 4n |
| an-2 |
| an+1 |
| 1+2×4n |
| 4n-1 |
由an≤t•4n得t≥
2+
| ||
| 4n-1 |
2+
| ||
| 4n-1 |
2+
| ||
| 4n-1 |
| 3 |
| 4 |
| 3 |
| 4 |
(Ⅲ)an=
| 2•4n+1 |
| 4n-1 |
| 3 |
| 4n-1 |
| 3 |
| 4n |
| 3 |
| 4 |
| 3 |
| 42 |
| 3 |
| 4n |
| 3 |
| 4 |
| 3 |
| 42 |
| 3 |
| 4n |
=2n+
| 3 |
| 4 |
1-(
| ||
1-
|
| 1 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
点评:本题考查构造新数列是求数列的通项,考查分离参数法求解恒成立问题,考查放缩法证明不等式,属于中档题.
练习册系列答案
相关题目