题目内容

10.若Sn=sin$\frac{π}{7}+sin\frac{2π}{7}+…+sin\frac{nπ}{7}(n∈{N^*})$,则在S1,S2,…,S2017中,正数的个数是(  )
A.143B.286C.1731D.2000

分析 由于sin$\frac{π}{7}$>0,$sin\frac{2π}{7}$>0,…,$sin\frac{6π}{7}$>0,sin$\frac{7π}{7}$=0,sin$\frac{8π}{7}$=-$sin\frac{π}{7}$<0,…,sin$\frac{13π}{7}$=-$sin\frac{6π}{7}$<0,sin$\frac{14π}{7}$=0,可得到S1>0,…,S12>0,S13=0,而S14=0,从而可得到周期性的规律,从而得到答案.

解答 解:由于sin$\frac{π}{7}$>0,$sin\frac{2π}{7}$>0,…,$sin\frac{6π}{7}$>0,sin$\frac{7π}{7}$=0,sin$\frac{8π}{7}$=-$sin\frac{π}{7}$<0,…,sin$\frac{13π}{7}$=-$sin\frac{6π}{7}$<0,sin$\frac{14π}{7}$=0,可得到S1>0,…,S12>0,S13=0,而S14=0,
2017=14×144+1,
∴S1,S2,…,S2017中,正数的个数是2017-144×2+2=1731.
故选:C.

点评 本题考查了三角函数的诱导公式周期性、数列求和,考查了分类讨论方法、推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网