题目内容
计算
解:原式=![]()
=![]()
=|
+1|+|
-1|
=![]()
=![]()
练习册系列答案
相关题目
为了求1+2+22+23+…+22008的值,可令S=1=2+22+23+…+22008,则2S=2+22+23+24+…+22009,因此2S-S=22009-1,所以1+2+22+23+…+22008=22009-1仿照以上推理计算出1+5+52+53+…+52009的值是( )
| A、52009-1 | ||
| B、52010-1 | ||
| C、52009-1 | ||
D、
|