题目内容
【题目】[选修4—5:参数方程选讲]
在直角坐标系xoy中,曲线
的参数方程是
(t是参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线
的极坐标方程是![]()
(1)求曲线
的普通方程和曲线
的直角坐标方程;
(2)若两曲线交点为A、B,求![]()
【答案】(1)
的普通方程是:
,曲线
的直角坐标方程是:
(2)![]()
【解析】
(1)将C1的参数方程两边平分再相减消去参数t得到普通方程,将C2的极坐标方程展开,根据极坐标与直角坐标的对应关系得出C2的直角坐标方程;
(2)求出C2的参数方程,代入C1的普通方程,根据参数的几何意义得出交点间的距离.
(1)曲线
的普通方程是:![]()
曲线
的直角坐标方程是:![]()
(2)因为是过点
的直线
所以
的的参数方程为:
(t为参数)
代入
的的普通方程
,得![]()
解得
,故![]()
【题目】某学生为了测试煤气灶烧水如何节省煤气的问题设计了一个实验,并获得了煤气开关旋钮旋转的弧度数
与烧开一壶水所用时间
的一组数据,且作了一定的数据处理(如下表),得到了散点图(如下图).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
表中
,
.
![]()
(1)根据散点图判断,
与
哪一个更适宜作烧水时间
关于开关旋钮旋转的弧度数
的回归方程类型?(不必说明理由)
(2)根据判断结果和表中数据,建立
关于
的回归方程;
(3)若单位时间内煤气输出量
与旋转的弧度数
成正比,那么,利用第(2)问求得的回归方程知
为多少时,烧开一壶水最省煤气?
附:对于一组数据
,其回归直线
的斜率和截距的最小二乘法估计值分别为
,![]()
【题目】众所周知,城市公交车的数量太多会造成资源的浪费,太少又难以满足乘客的需求,为此,某市公交公司在某站台的50名候车乘客中随机抽取10名,统计了他们的候车时间(单位:分钟),得到下表.
候车时间 | 人数 |
| 1 |
| 4 |
| 2 |
| 2 |
| 1 |
(1)估计这10名乘客的平均候车时间(同一组中的每个数据可用该组区间的中点值代替);
(2)估计这50名乘客的候车时间少于10分钟的人数.