题目内容
(2012•兰州模拟)已知数列{an}中a1=
,an+1=
(n∈N*)
(1)求数列{an}的通项公式;
(2)已知{bn}的前n项和为Sn,且对任意正整数N,都有bn•
=1成立.求证:
≤Sn<1.
| 1 |
| 2 |
| 3an |
| an+3 |
(1)求数列{an}的通项公式;
(2)已知{bn}的前n项和为Sn,且对任意正整数N,都有bn•
| n(3-4an) |
| an |
| 1 |
| 2 |
分析:(1)对数列递推式,两边取倒数,可得数列{
}是以2为首项,
为公差的等差数列,由此可得数列{an}的通项公式;
(2)先确定数列{bn}的通项,再利用裂项法求和,即可证得结论.
| 1 |
| an |
| 1 |
| 3 |
(2)先确定数列{bn}的通项,再利用裂项法求和,即可证得结论.
解答:(1)解:∵an+1=
(n∈N*)
∴
=
+
∴
-
=
∵a1=
∴数列{
}是以2为首项,
为公差的等差数列
∴
=2+
=
∴an=
(2)证明:∵bn•
=1
∴bn=
=
-
∴Sn=b1+b2+…+bn=(1-
)+(
-
)+…+(
-
)=1-
∴
≤Sn<1.
| 3an |
| an+3 |
∴
| 1 |
| an+1 |
| 1 |
| 3 |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 3 |
∵a1=
| 1 |
| 2 |
∴数列{
| 1 |
| an |
| 1 |
| 3 |
∴
| 1 |
| an |
| n-1 |
| 3 |
| n+5 |
| 3 |
∴an=
| 3 |
| n+5 |
(2)证明:∵bn•
| n(3-4an) |
| an |
∴bn=
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=b1+b2+…+bn=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
∴
| 1 |
| 2 |
点评:本题考查数列递推式,考查等差数列的证明,考查裂项法求数列的和,确定数列的通项是关键.
练习册系列答案
相关题目