题目内容
已知函数
,若存在
,使得
,则
的取值范围为( )
| A. | B. | C. | D. |
C
解析试题分析:由已知得,当
时,
;当
时,
.因为存在
,使得
,所以使得
的
,那么
,所以设
,
则
,在
上是单调递增的,
设
,则
,
,所以
的取值范围为
.
考点:1.分段函数的图像与性质;2.二次函数的单调性与最值
练习册系列答案
相关题目
函数
的零点所在的区间为( )
| A.(1,2) | B.(2,3) | C.(3,4) | D.(4,5) |
已知
,
,
,则
三者的大小关系是
| A. | B. | C. | D. |
函数f(x)=lnx的图象与函数g(x)=x2-4x+4的图象的交点个数为( )
| A.0 | B.1 | C.2 | D.3 |
若函数
的图像上存在点
,满足约束条件
,则实数
的最大值为( )
| A. | B. | C. | D. |
已知
是
上的单调递增函数,则实数
的取值范围为 ( )
| A.(1,+∞) | B.[4,8) | C.(4,8) | D.(1,8) |
函数
的单调减区间为( )
| A. | B. | C. | D. |
若关于x的不等式
在区间
内有解,则实数a的取值范围是( )
| A. | B. | C. | D. |
已知函数
的定义域为
为正整数),值域为[0,2],则满足条件的整数对(m,n)共有 ( )
| A.1个 | B.7个 | C.8个 | D.16个 |