题目内容
现有一张长80厘米、宽60厘米的长方形ABCD铁皮,准备用它做成一只无盖长方体铁皮盒,要求材料利用率为l00%,不考虑焊接处损失.
方案一:如图(1),从右侧两个角上剪下两个小正方形,焊接到左侧中闻,沿虚线折起,求此时铁皮盒的体积;
方案二:如图(2),若从长方形ABCD的一个角上剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,求该铁皮盒体积的最大值,并说明如何剪拼?.

方案一:如图(1),从右侧两个角上剪下两个小正方形,焊接到左侧中闻,沿虚线折起,求此时铁皮盒的体积;
方案二:如图(2),若从长方形ABCD的一个角上剪下一块正方形铁皮,作为铁皮盒的底面,用余下材料剪拼后作为铁皮盒的侧面,求该铁皮盒体积的最大值,并说明如何剪拼?.
方案一:设小正方形的边长为x,由题意得4x=60,x=15,
所以铁皮盒的体积为65×30×15=29250(cm3). …(4分)
方案二:设底面正方形的边长为x(0<x<60),长方体的高为y,
由题意得x2+4xy=4800,即y=
,
所以铁皮盒体积V(x)=x2y=x2
=-
x3+1200x,…(10分)V/(x)=-
x2+1200,令V′(x)=0,解得x=40或x=-40(舍),
当x∈(0,40)时,V'(x)<0;当x∈(40,60)时,V'(x)>0,
所以函数V(x)在x=40时取得最大值32000cm3.将余下材料剪拼成四个长40cm,宽20cm的小长方形作为正方形铁皮盒的侧面即可. …(15分)
答:方案一铁皮盒的体积为29250cm3;方案二铁皮盒体积的最大值为32000cm3,将余下材料剪拼成四个长40cm,宽20cm的小长方形作为正方形铁皮盒的侧面即可.(16分)
所以铁皮盒的体积为65×30×15=29250(cm3). …(4分)
方案二:设底面正方形的边长为x(0<x<60),长方体的高为y,
由题意得x2+4xy=4800,即y=
| 4800-x2 |
| 4x |
所以铁皮盒体积V(x)=x2y=x2
| 4800-x2 |
| 4x |
| 1 |
| 4 |
| 3 |
| 4 |
当x∈(0,40)时,V'(x)<0;当x∈(40,60)时,V'(x)>0,
所以函数V(x)在x=40时取得最大值32000cm3.将余下材料剪拼成四个长40cm,宽20cm的小长方形作为正方形铁皮盒的侧面即可. …(15分)
答:方案一铁皮盒的体积为29250cm3;方案二铁皮盒体积的最大值为32000cm3,将余下材料剪拼成四个长40cm,宽20cm的小长方形作为正方形铁皮盒的侧面即可.(16分)
练习册系列答案
相关题目