题目内容
已知O为原点,向量| OA |
| OB |
| OC |
| π |
| 2 |
(1)求证:(
| OA |
| OB |
| OC |
(2)求tan∠AOB的最大值及相应x值.
分析:(1)先求出
-
=(0,2sinx),再由(
-
)•
=0×2+2sinx×0=0可证.
(2)由tan∠AOB=tan(∠AOC-∠BOC),根据两角差的正切公式可得答案.
| OA |
| OB |
| OA |
| OB |
| OC |
(2)由tan∠AOB=tan(∠AOC-∠BOC),根据两角差的正切公式可得答案.
解答:解:(1)∵0<x<
,∴3sinx>sinx,∴
-
≠0
又
-
=(0,2sinx)
∴(
-
)•
=0×2+2sinx×0=0
∴(
-
)⊥
.
(2)tan∠AOC=
=tanx,tan∠BOC=
=
tanx
∵
-
=
,∴
⊥
,0<∠AOB<
.
∴tan∠AOB=tan(∠AOC-∠BOC)
=
=
=
≤
=
(当tanx=
即x=
时取“=”)
所以tan∠AOB的最大值为
,相应的x=
| π |
| 2 |
| OA |
| OB |
又
| OA |
| OB |
∴(
| OA |
| OB |
| OC |
∴(
| OA |
| OB |
| OC |
(2)tan∠AOC=
| 3sinx |
| 3cosx |
| sinx |
| 3cosx |
| 1 |
| 3 |
∵
| OA |
| OB |
| BA |
| BA |
| OC |
| π |
| 2 |
∴tan∠AOB=tan(∠AOC-∠BOC)
=
| tan∠AOC-tan∠BOC |
| 1+tan∠AOCtan∠BOC |
tanx-
| ||
1+
|
=
| 2tanx |
| 3+tan2x |
| 2tanx | ||
2
|
| ||
| 3 |
(当tanx=
| 3 |
| π |
| 3 |
所以tan∠AOB的最大值为
| ||
| 3 |
| π |
| 3 |
点评:本题主要考查向量垂直和点乘之间的关系以及三角的正切求值问题.
练习册系列答案
相关题目