题目内容
已知数列{an}满足:a1=3,an=2an-1+2n-1(n∈N*,n≥2),且存在实数λ使得{
}为等差数列,则{an}的通项公式是an=______.
| an+λ |
| 2n |
假设存在一个实数λ符合题意,则
-
必为与n无关的常数
∵
-
=
=
=1-
①
要使
-
是与n无关的常数,则
=0,得λ=-1
故存在一个实数λ=-1,使得数列{
}为等差数列
由①知数列{
}的公差d=1,
∴
=
+(n-1)•1=n.
得an=n•2n+1
故答案为:n•2n+1.
| an+λ |
| 2n |
| an-1+λ |
| 2n-1 |
∵
| an+λ |
| 2n |
| an-1+λ |
| 2n-1 |
| an-2an-1-λ |
| 2n |
| 2n-1-λ |
| 2n |
| 1+λ |
| 2n |
要使
| an+λ |
| 2n |
| an-1+λ |
| 2n-1 |
| 1+λ |
| 2n |
故存在一个实数λ=-1,使得数列{
| an+λ |
| 2n |
由①知数列{
| an+λ |
| 2n |
∴
| an-1 |
| 2n |
| a1-1 |
| 21 |
得an=n•2n+1
故答案为:n•2n+1.
练习册系列答案
相关题目