题目内容
已知抛物线y2=2px(p>0)的焦点弦AB的两端点为A(x1,y1),B(x2,y2),则kOA•kOB=
-4
-4
.分析:由于kOA•kOB=
,弦AB斜率k=
=
=
,由A、F、B三点共线,知k=
,所以
=
,解得y1y2=-p2.由x1x2=
×
=
=
,由此能求出
的值.
| y1y2 |
| x1x2 |
| y1-y2 |
| x1-x2 |
| y1-y2 | ||||
|
| 2p |
| y1+y2 |
| y1-0 | ||
x1-
|
| y1 | ||
x1-
|
| 2p |
| y1+y2 |
| y12 |
| 2p |
| y22 |
| 2p |
| (y1y2)2 |
| 4p2 |
| p2 |
| 4 |
| y1 y2 |
| x1x2 |
解答:解:弦AB斜率k=
=
=
,①
∵A、F、B三点共线,
∴k=
,②
由①,②得
=
,
∴y1y2+y12=2px1-p2,
∵y12=2px1,∴y1y2=-p2,③
∵x1x2=
×
=
=
=
,④
因此,由④÷③得
=
=-4.
∴kOA•kOB=
=-4.
故答案为:-4.
| y1-y2 |
| x1-x2 |
| y1-y2 | ||||
|
| 2p |
| y1+y2 |
∵A、F、B三点共线,
∴k=
| y1-0 | ||
x1-
|
由①,②得
| y1 | ||
x1-
|
| 2p |
| y1+y2 |
∴y1y2+y12=2px1-p2,
∵y12=2px1,∴y1y2=-p2,③
∵x1x2=
| y12 |
| 2p |
| y22 |
| 2p |
| (y1y2)2 |
| 4p2 |
| (-p2)2 |
| 4p2 |
| p2 |
| 4 |
因此,由④÷③得
| y1 y2 |
| x1x2 |
| -p2 | ||
|
∴kOA•kOB=
| y1 y2 |
| x1x2 |
故答案为:-4.
点评:本题主要考查直线的斜率公式、抛物线的简单性质.考查基础知识的灵活应用,属于基础题.
练习册系列答案
相关题目