题目内容
【题目】是否存在常数
,使等式
对于一切
都成立?若不存在,说明理由;若存在,请用数学归纳法证明?
【答案】
,证明详见解析.
【解析】
试题分析:先从特殊情形
,等式必须成立,求出
值,然后用数学归纳法加以证明,在这里必须指出的是:若题目没有讲要用数学归纳法证明,我们也应从数学归纳法考虑,因为等式的左边我们无法通过数列求和的知识解决,其次本题是与自然数有关的命题证明,我们应优先考虑数学归纳法,证明时必须严格遵循数学归纳法的证题步骤,做到规范化.
试题解析:若存在常数
使等式成立,则将
代入上式,有
得
,即有
对于一切
成立. 5分
数学归纳法证明如下:
证明如下:(1)当
时,左边=
,右边=
,所以等式成立,
(2)假设
(
且
)时等式成立,即
,
当
时,![]()
![]()
![]()
![]()
![]()
![]()
![]()
也就是说,当
时,等式成立,
综上所述,可知等式对任何
span>都成立. 12分
【题目】某种产品的年销售量
与该年广告费用支出
有关,现收集了4组观测数据列于下表:
| 1 | 4 | 5 | 6 |
| 30 | 40 | 60 | 50 |
现确定以广告费用支出
为解释变量,销售量
为预报变量对这两个变量进行统计分析.
(1)已知这两个变量满足线性相关关系,试建立
与
之间的回归方程;
(2)假如2017年广告费用支出为10万元,请根据你得到的模型,预测该年的销售量
.
(线性回归方程系数公式
).
【题目】某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如下表所示:
积极参加班级工作 | 不积极参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性不高 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?
(2)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?
(3)学生的学习积极性与对待班极工作的态度是否有关系?请说明理由.
附:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
![]()