题目内容
已知O是锐角三角形△ABC的外接圆的圆心,且∠A=θ,若
+
=2m
,则m=( )
| cosB |
| sinC |
| AB |
| cosC |
| sinB |
| AC |
| AO |
| A.sinθ | B.cosθ | C.tanθ | D.不能确定 |
设外接圆半径为R,则:
+
=2m
可化为:
•(
-
)+
•(
-
)=2m•
(*).
易知
与
的夹角为2∠C,
与
的夹角为2∠B,
与
的夹角为0,
|
|=|
|=|
|=R.
则对(*)式左右分别与
作数量积,可得:
•
•
-
•
2+
•
•
-
•
2=-2m
2.
即
• R2 (cos2C-1)+
•R2(cos2B-1)=-2mR2.
∴-2sinCcosB+(-2sinBcosC)=-2m,∴sinCcosB+sinBcosC=m,即 sin(B+C)=m.
因为sinA=sin[π-(B+C)]=sin(B+C)且∠A=θ,
所以,m=sinA=sinθ,
故选A.
| cosB |
| sinC |
| AB |
| cosC |
| sinB |
| AC |
| AO |
| cosB |
| sinC |
| OB |
| OA |
| cosC |
| sinB |
| OC |
| OA |
| AO |
易知
| OA |
| OB |
| OC |
| OA |
| OA |
| OA |
|
| OA |
| OB |
| OC |
则对(*)式左右分别与
| OA |
| cosB |
| sinC |
| OA |
| OB |
| cosB |
| sinC |
| OA |
| cosC |
| sinB |
| OC |
| OA |
| cosC |
| sinB |
| OA |
| OA |
即
| cosB |
| sinC |
| cosC |
| sinB |
∴-2sinCcosB+(-2sinBcosC)=-2m,∴sinCcosB+sinBcosC=m,即 sin(B+C)=m.
因为sinA=sin[π-(B+C)]=sin(B+C)且∠A=θ,
所以,m=sinA=sinθ,
故选A.
练习册系列答案
相关题目