题目内容
已知函数f(x)=(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=
anan+1·3n,Sn=b1+b2+…+bn,求Sn.
解:(1)由已知an+1=
,∴
+1.∴
+
=3(
+
),并且
+
=
.∴数列{
+
}为以
为首项,3为公比的等比数列.∴
+
=
·3n-1.∴an=
.
(2)∵bn=
,
∴Sn=b1+b2+…+bn=![]()
.
练习册系列答案
相关题目
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|
题目内容
已知函数f(x)=(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=
anan+1·3n,Sn=b1+b2+…+bn,求Sn.
解:(1)由已知an+1=
,∴
+1.∴
+
=3(
+
),并且
+
=
.∴数列{
+
}为以
为首项,3为公比的等比数列.∴
+
=
·3n-1.∴an=
.
(2)∵bn=
,
∴Sn=b1+b2+…+bn=![]()
.
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|