题目内容
(理)已知数列{an}满足an+1=an+
,且a1=1,则前n项和Sn=
-
(
+
)
-
(
+
).
| 1 |
| n(n+2) |
| 7n |
| 4 |
| 1 |
| 2 |
| n |
| i=1 |
| 1 |
| i |
| 1 |
| i+1 |
| 7n |
| 4 |
| 1 |
| 2 |
| n |
| i=1 |
| 1 |
| i |
| 1 |
| i+1 |
分析:利用“裂项求和”和“累加求和”即可得出.
解答:解:∵an+1=an+
,
∴an+1-an=
=
(
-
),
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=
[(
-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]+1
=
(1+
-
-
)+1
=
-
(
+
),
∴Sn=
-
(
+
).
故答案为
-
(
+
).
| 1 |
| n(n+2) |
∴an+1-an=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=
| 1 |
| 2 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n-2 |
| 1 |
| n-1 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 1 |
| 1 |
| 3 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
=
| 7 |
| 4 |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=
| 7n |
| 4 |
| 1 |
| 2 |
| n |
| i=1 |
| 1 |
| i |
| 1 |
| i+1 |
故答案为
| 7n |
| 4 |
| 1 |
| 2 |
| n |
| i=1 |
| 1 |
| i |
| 1 |
| i+1 |
点评:熟练掌握“裂项求和”和“累加求和”是解题的关键.
练习册系列答案
相关题目