题目内容

(理)已知数列{an}满足an+1=an+
1
n(n+2)
,且a1=1,则前n项和Sn=
7n
4
-
1
2
n
i=1
(
1
i
+
1
i+1
)
7n
4
-
1
2
n
i=1
(
1
i
+
1
i+1
)
分析:利用“裂项求和”和“累加求和”即可得出.
解答:解:∵an+1=an+
1
n(n+2)

an+1-an=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=
1
2
[(
1
n-1
-
1
n+1
)+(
1
n-1
-
1
n
)+(
1
n-2
-
1
n-1
)
+…+(
1
2
-
1
4
)+(
1
1
-
1
3
)]
+1
=
1
2
(1+
1
2
-
1
n
-
1
n+1
)
+1
=
7
4
-
1
2
(
1
n
+
1
n+1
)

∴Sn=
7n
4
-
1
2
n
i=1
(
1
i
+
1
i+1
)

故答案为
7n
4
-
1
2
n
i=1
(
1
i
+
1
i+1
)
点评:熟练掌握“裂项求和”和“累加求和”是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网