题目内容

已知奇函数f(x)是定义在(-1,1)上的增函数,若f(m-1)+f(2m-1)≤0,则m的取值范围是(  )
分析:根据题意,对f(m-1)+f(2m-1)≤0变形,结合奇函数的性质可得f(m-1)≤f(1-2m),由函数的定义域与单调性可得结论.
解答:解:∵f(m-1)+f(2m-1)≤0,
∴f(m-1)≤-f(2m-1),
又∵f(x)为奇函数,则-f(2m-1)=f(1-2m),
则有f(m-1)≤f(1-2m),
∵f(x)为(-1,1)上的增函数,
-1<m-1<1
-1<2m-1<1
m-1≤1-2m

∴0<m≤
2
3

故选D.
点评:本题考查函数奇偶性与单调性的综合应用,解题时需要注意函数的定义域.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网