题目内容

已知α,β为锐角,,则y与x的函数解析式是   
【答案】分析:先根据已知条件得到cosα,sin(α+β),再结合β=α+β-α代入两角差的余弦公式即可得到答案.
解答:解:∵α,β为锐角,
∴cosα=,sin(α+β)==
∴cosβ=cos[(α+)β-α]
=cos(α+β)cosα+sin(α+β)sin
α=-+x.
∴y=-+x,x∈(0,1).
故答案为:y=-+x,x∈(0,1).
点评:本题主要考查两角和与差的余弦函数以及同角三角函数间的基本关系.解决本题的关键在于把β转化为:α+β-α.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网