题目内容
(Ⅰ)试证:AB⊥平面BEF;
(Ⅱ)设PA=k•AB,且二面角E-BD-C的平面角大于45°,求k的取值范围.
分析:(Ⅰ)欲证AB⊥平面BEF,根据直线与平面垂直的判定定理可知只需证AB与平面BEF内两相交直线垂直,而AB⊥BF.
根据面面垂直的性质可知AB⊥EF,满足定理所需条件;
(Ⅱ)以A为原点,以AB、AD、AP为OX、OY、OZ正向建立空间直角坐标系,设AB的长为1,求出平面CDB的法向量和平面EDB的法向量,然后利用向量的夹角公式建立关系,解之即可.
根据面面垂直的性质可知AB⊥EF,满足定理所需条件;
(Ⅱ)以A为原点,以AB、AD、AP为OX、OY、OZ正向建立空间直角坐标系,设AB的长为1,求出平面CDB的法向量和平面EDB的法向量,然后利用向量的夹角公式建立关系,解之即可.
解答:
解:(Ⅰ)证:由已知DF∥AB且∠DAB为直角,
故ABFD是矩形,从而AB⊥BF.
又PA⊥底面ABCD,
所以平面PAD⊥平面ABCD,
因为AB⊥AD,故AB⊥平面PAD,
所以AB⊥PD,
在△PDC内,E、F分别是PC、CD的中点,EF∥PD,所以AB⊥EF.
由此得AB⊥平面BEF. (6分)
(Ⅱ)以A为原点,以AB、AD、AP为OX、OY、OZ正向建立空间直角坐标系,
设AB的长为1,则
=(-1,2,0),
=(0,1
)
设平面CDB的法向量为
=(0,0,1),平面EDB的法向量为
=(x,y,z),
则
∴
,取y=1,可得m2=(2,1,-
)
设二面角E-BD-C的大小为θ,
则cosθ=|cos<m1,m2>|═
<
化简得k2>
,则k>
.(12分)
故ABFD是矩形,从而AB⊥BF.
又PA⊥底面ABCD,
所以平面PAD⊥平面ABCD,
因为AB⊥AD,故AB⊥平面PAD,
所以AB⊥PD,
在△PDC内,E、F分别是PC、CD的中点,EF∥PD,所以AB⊥EF.
由此得AB⊥平面BEF. (6分)
(Ⅱ)以A为原点,以AB、AD、AP为OX、OY、OZ正向建立空间直角坐标系,
设AB的长为1,则
| BD |
| BE |
| k |
| 2 |
设平面CDB的法向量为
. |
| m1 |
. |
| m2 |
则
|
∴
|
| 2 |
| k |
设二面角E-BD-C的大小为θ,
则cosθ=|cos<m1,m2>|═
| ||||
|
| ||
| 2 |
化简得k2>
| 4 |
| 5 |
2
| ||
| 5 |
点评:本小题主要考查直线与平面的位置关系、二面角及其平面角等有关知识,考查空间想象能力和思维能力,应用向量知识解决立体几何问题的能力.
练习册系列答案
相关题目