题目内容

△ABC中,角A、B、C的对边分别为a、b、c且b2+c2-a2+bc=0,则
asin(30°-C)
b-c
等于(  )
分析:根据题中等式,结合余弦定理算出A=
π
3
,再由正弦定理将
asin(30°-C)
b-c
化简为
sinAsin(30°-C)
sinB-sinC
.由sinB=sin(A+C)和A=
π
3
,将分子、分母展开化简、约去公因式,即可得到
asin(30°-C)
b-c
的值.
解答:解:∵△ABC中,b2+c2=a2-bc
∴根据余弦定理,得cosA=
b2+c2-a2
2bc
=-
1
2

∵A∈(0,π),∴A=
3

由正弦定理,得
a
sinA
=
b
sinB
=
c
sinC
=2R

asin(30°-C)
b-c
=
2RsinAsin(30°-C)
2R(sinB-sinC)
=
3
2
(
1
2
cosC-
3
2
sinC)
sin(
π
3
-C)-sinC

∵sin(
π
3
-C)-sinC=
3
2
cosC-
1
2
sinC-sinC=
3
1
2
cosC-
3
2
sinC)
∴原式=
3
2
(
1
2
cosC-
3
2
sinC)
3
(
1
2
cosC-
3
2
sinC)
=
1
2

故选:A
点评:本题给出三角形边之间的平方关系,求角A的大小并求关于边与角的三角函数关系式的值,着重考查了两角和与差的正弦公式和用正、余弦定理解三角形等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网