题目内容

若函数f(x)=x3-ax2+2的一个极值点是2,则a=______,此函数在区间[-1,1]上的最大值是______.
(1)对函数f(x)求导得,f′(x)=3x2-2ax,
因为f(x)在x=2时取得极值,所以f'(2)=0,
即12-4a=0,解得a=3.                                                                      
(2)由(1)得 f(x)=x3-3x2+2.
∴f'(x)=3x2-6x,
令f'(x)>0,解得x<0或 x>2;  令f'(x)<0,解得0<x<2.
又x∈[-1,1]
所以f(x)在区间[-1,0)上单调递增,在 (0,1]内单调递减,
所以当x=0时,f(x)有最大值f(0)=2.
故答案为:3;2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网