题目内容
已知数列{an}满足a1=1,an+1=
an+1(n∈N*).
(1)证明数列{
}是等差数列;
(2)求数列{an}的通项公式;
(3)设bn=
,求证:b1+b2+…+bn<6.
| n+2 |
| n |
(1)证明数列{
| an |
| n |
(2)求数列{an}的通项公式;
(3)设bn=
2
| ||
| an |
分析:(1)根据数列递推式,再写一式,两式相减整理可得
-
=
-
,即可得到数列{
}是等差数列;
(2)确定数列{
}是以1为首项,1为公差的等差数列,即可求数列{an}的通项公式;
(3)对通项放缩,再裂项求和,即可证得结论.
| an+1 |
| n+1 |
| an |
| n |
| an |
| n |
| an-1 |
| n-1 |
| an |
| n |
(2)确定数列{
| an |
| n |
(3)对通项放缩,再裂项求和,即可证得结论.
解答:(1)证明:∵an+1=
an+1,∴an=
an-1+1
两式相减可得an+1-an=
an-
an-1,
整理可得
-
=
-
,
∴数列{
}是等差数列;
(2)解:∵a1=1,an+1=
an+1,∴a2=3a1+1=4
∴
-
=1
∴数列{
}是以1为首项,1为公差的等差数列
∴
=n,
∴an=n2;
(3)证明:n≥2时,bn=
=
=
<
=4(
-
)
∴b1+b2+…+bn<b1+4[(1-
)+(
-
)+…+(
-
)=2+4(1-
)<6.
| n+2 |
| n |
| n+1 |
| n-1 |
两式相减可得an+1-an=
| n+2 |
| n |
| n+1 |
| n-1 |
整理可得
| an+1 |
| n+1 |
| an |
| n |
| an |
| n |
| an-1 |
| n-1 |
∴数列{
| an |
| n |
(2)解:∵a1=1,an+1=
| n+2 |
| n |
∴
| a2 |
| 2 |
| a1 |
| 1 |
∴数列{
| an |
| n |
∴
| an |
| n |
∴an=n2;
(3)证明:n≥2时,bn=
2
| ||
| an |
2
| ||
| n2 |
| 4 | ||||
n
|
| 4 | ||||
(n-1)
|
| 1 | ||
|
| 1 | ||
|
∴b1+b2+…+bn<b1+4[(1-
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
点评:本题考查数列递推式,考查数列的通项,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目