题目内容
已知数列{an}是等差数列,bn=an+12-an2,求证:{bn}也是等差数列.
证明:∵{an}成等差数列,
∴an+1-an=d,bn+1-bn=(an+22-an+12)-(an+12-an2)
=d(an+2+an+1)-d(an+1+an)
=d(an+2-an)=2d2.
∴数列{bn}是等差数列.
练习册系列答案
相关题目
题目内容
已知数列{an}是等差数列,bn=an+12-an2,求证:{bn}也是等差数列.
证明:∵{an}成等差数列,
∴an+1-an=d,bn+1-bn=(an+22-an+12)-(an+12-an2)
=d(an+2+an+1)-d(an+1+an)
=d(an+2-an)=2d2.
∴数列{bn}是等差数列.