题目内容
在等差数列{an}中,a2=5,a1+a4=12,则an=______;设bn=
(n∈N*),则数列{bn}的前n项和Sn=______.
| 1 | ||
|
设等差数列{an}的公差为d,则由a2=5,a1+a4=12 可得
,解得
,
故an=3+(n-1)2=2n+1.
∵bn=
=
=
[
-
],
∴数列{bn}的前n项和Sn=
[1-
+
-
+
-
+…+
-
]=
[1-
]=
,
故答案为 2n+1,
.
|
|
故an=3+(n-1)2=2n+1.
∵bn=
| 1 | ||
|
| 1 |
| 4n(n+1) |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
∴数列{bn}的前n项和Sn=
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 4 |
| 1 |
| n+1 |
| n |
| 4(n+1) |
故答案为 2n+1,
| n |
| 4(n+1) |
练习册系列答案
相关题目