题目内容
【题目】设函数
的定义域为集合
,函数
的定义域为集合
.
(1)若
,求实数
的取值范围;
(2)若
,求实数
的取值范围.
【答案】
(1)解:可知集合
,集合
若
,则
,即
;
故实数
的取值范围是 ![]()
(2)解:若
,则
,故实数
的取值范围是 ![]()
【解析】(1)利用真数大于零求出集合A的解集,再利用分母不为零被开方数大于等于零求出集合B,结合子集的定义求出m的取值范围。(2)根据题意结合交集的运算性质即可求出结果。
【考点精析】解答此题的关键在于理解子集与真子集的相关知识,掌握任何一个集合是它本身的子集;n个元素的子集有2n个,n个元素的真子集有2n -1个,n个元素的非空真子集有2n-2个,以及对集合的交集运算的理解,了解交集的性质:(1)A∩B
A,A∩B
B,A∩A=A,A∩
=
,A∩B=B∩A;(2)若A∩B=A,则A
B,反之也成立.
练习册系列答案
相关题目