题目内容
已知函数f(x)=sin(2x+| π |
| 6 |
| π |
| 3 |
(1)求f(
| π |
| 12 |
(2)求f(x)的最大值及相应x的值.
分析:(1)把x=
直接代入函数解析式求解.
(2)先利用和差角公式对函数进行化简可得,f(x)=2sin(2x+
)+1,结合正弦函数的性质可求.
| π |
| 12 |
(2)先利用和差角公式对函数进行化简可得,f(x)=2sin(2x+
| π |
| 6 |
解答:解:(1)f(
)=sin(2×
+
)-cos(2×
+
)+2cos2
=sin
-cos
+1+cos
=
-0+1+
=
+1
(2)∵f(x)=sin(2x+
)-cos(2x+
)+2cos2x
=sin2xcos
+cos2xsin
-cos2xcos
+sin2xsin
+2cos2x+1
=
sin2x+cos2x+1=2sin(2x+
)+1,
∴当sin(2x+
)=1时,f(x)max=2+1=3,
此时,2x+
=2kπ+
,即x=kπ+
(k∈Z),
| π |
| 12 |
| π |
| 12 |
| π |
| 6 |
| π |
| 12 |
| π |
| 3 |
| π |
| 12 |
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
| ||
| 2 |
| ||
| 2 |
=
| 3 |
(2)∵f(x)=sin(2x+
| π |
| 6 |
| π |
| 3 |
=sin2xcos
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
| π |
| 3 |
=
| 3 |
| π |
| 6 |
∴当sin(2x+
| π |
| 6 |
此时,2x+
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
点评:本题主要考查了特殊角的三角函数值的求解,考查了和差角公式的运用,还考查了三角函数的性质,属于知识的简单综合.
练习册系列答案
相关题目