题目内容
已知数列{an}的通项公式为an=
,若an,an+2,an+k(k∈N*,k>2)成等差数列,则k的取值集合是______.
| 1 |
| n |
∵an=
,且an,an+2,an+k成等差数列,
∴
=
+
=
,
整理得:k=
=4+
,
∵k>2,且k∈N*,
∴当n=3时,k=12;n=4时,k=8;n=6时,k=6;n=10时,k=5,
则k的取值集合是{5,6,8,12}.
故答案为:{5,6,8,12}
| 1 |
| n |
∴
| 2 |
| n+2 |
| 1 |
| n |
| 1 |
| n+k |
| 2n+k |
| n(n+k) |
整理得:k=
| 4n |
| n-2 |
| 8 |
| n-2 |
∵k>2,且k∈N*,
∴当n=3时,k=12;n=4时,k=8;n=6时,k=6;n=10时,k=5,
则k的取值集合是{5,6,8,12}.
故答案为:{5,6,8,12}
练习册系列答案
相关题目
已知数列{an}的通项为an=2n-1,Sn为数列{an}的前n项和,令bn=
,则数列{bn}的前n项和的取值范围为( )
| 1 |
| Sn+n |
A、[
| ||||
B、(
| ||||
C、[
| ||||
D、[
|