题目内容
(2009•孝感模拟)定义数列{akn}中的前n项的积为数列{akn}的n项阶乘,记为(akn)!!=ak1•ak2•ak3…•akn,例如:(a3n+1)!!=a4•a7•a10•…•a3n+1,已知f(x)=x-sinx在[0,n]上的最大值为bn;设an=bn+sin n.
(1)求an
(2)求证:
<
(3)是否存在m∈N*使
<
-1成立?若存在,求出所有的m的值;若不存在,请说明理由.
(1)求an
(2)求证:
| (a2n-1)!! |
| (a2n)!! |
| 1 | ||
|
(3)是否存在m∈N*使
| m |
| n=1 |
| (a2n-1)!! |
| (a2n)!! |
| 2am+1 |
分析:(1)由f′(x)=1-cosx≥0,知f(x)在[0,n]上单调递增.所以f(n)max=f(n)=bn=n-sinn由此能求出an.
(2)由
=
=
和
<
=
=
能够证明
<
.
(3)由
<
=
+
+
…+
+
=
-1=
-1,知对于任意的m∈N*均有
<
-1.
(2)由
| (a2n-1)!! |
| (a2n)!! |
| (2n-1)!! |
| (2n)!! |
| 1•3•5•…•(2n-3)•(2n-1) |
| 2•4•6•…•(2n-2)•2n |
| 2k-1 |
| 2k |
| 2k-1 | ||
|
| 2k-1 | ||||
|
| ||
|
| (a2n-1)!! |
| (a2n)!! |
| 1 | ||
|
(3)由
| m |
| n=1 |
| (a2n-1)!! |
| (a2n)!! |
| m |
| n=1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 2m+1 |
| 2am+1 |
| m |
| n=1 |
| (a2n-1)!! |
| (a2n)!! |
| 2am+1 |
解答:解:(1)∵f′(x)=1-cosx≥0,
∴f(x)在[0,n]上单调递增.
∴f(n)max=f(n)=bn=n-sinn,
∴an=bn+sinn=n,
(2)∵
=
=
又
<
=
=
,
∴
<
•
•
•…•
•
=
,
(数学归纳法按(1分)+(3分)+(1分)评分)
(3)由(2)知:
<
=
+
+
…+
+
=
+
+…+
<
+
+…+
=(
-1)+(
-
)+…+(
-
)
=
-1=
-1,
∴对于任意的m∈N*均有
<
-1.
∴f(x)在[0,n]上单调递增.
∴f(n)max=f(n)=bn=n-sinn,
∴an=bn+sinn=n,
(2)∵
| (a2n-1)!! |
| (a2n)!! |
| (2n-1)!! |
| (2n)!! |
| 1•3•5•…•(2n-3)•(2n-1) |
| 2•4•6•…•(2n-2)•2n |
又
| 2k-1 |
| 2k |
| 2k-1 | ||
|
| 2k-1 | ||||
|
| ||
|
∴
| (a2n-1)!! |
| (a2n)!! |
| 1 | ||
|
| ||
|
| ||
|
| ||
|
| ||
|
| 1 | ||
|
(数学归纳法按(1分)+(3分)+(1分)评分)
(3)由(2)知:
| m |
| n=1 |
| (a2n-1)!! |
| (a2n)!! |
| m |
| n=1 |
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
=
| 2 | ||
2
|
| 2 | ||
2
|
| 2 | ||
2
|
<
| 2 | ||
|
| 2 | ||||
|
| 2 | ||||
|
=(
| 3 |
| 5 |
| 3 |
| 2m+1 |
| 2m-1 |
=
| 2m+1 |
| 2am+1 |
∴对于任意的m∈N*均有
| m |
| n=1 |
| (a2n-1)!! |
| (a2n)!! |
| 2am+1 |
点评:本题考查数列与不等式的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关题目