题目内容
已知函数f(x)=
sinxcosx-cos2x-
( I)当x∈(0,
),求f(x)的值域;
(II)设△ABC的内角A,B,C的对边分别为a,b,c,且c=
,f(C)=0,若向量
=(1,sinA)与向量
=(2,sinB)共线,求a,b的值.
| 3 |
| 1 |
| 2 |
( I)当x∈(0,
| π |
| 2 |
(II)设△ABC的内角A,B,C的对边分别为a,b,c,且c=
| 3 |
| m |
| n |
( I)∵f(x)=
sinxcosx-cos2x-
=
sin2x-
-
=sin(2x-
)-1,x∈(0,
),
∴2x-
∈(-
,
),∴-
<sin(2x-
)≤1,∴-
<f(x)≤0,即函数f(x)的值域为(-
,0].
(II)△ABC中,∵f(C)=sin(2C-
)-1=0,∴sin(2C-
)=1,∴2C-
=
,∴C=
.
∵
∥
,
=(1,sinA)与向量
=(2,sinB),∴sinB-2sinA=0,由正弦定理可得 b=2a.
又 cosC=
=
,解得a=1,b=2.
| 3 |
| 1 |
| 2 |
| ||
| 2 |
| 1+cos2x |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 2 |
∴2x-
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| 3 |
| 2 |
| 3 |
| 2 |
(II)△ABC中,∵f(C)=sin(2C-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
∵
| m |
| n |
| m |
| n |
又 cosC=
| a2+b2- c2 |
| 2ab |
| 1 |
| 2 |
练习册系列答案
相关题目